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ABSTRACT
Sharing location data is becoming more popular as mobile devices
become ubiquitous. Location-based service providers use this type
of data to provide geographically contextualized services to their
users. However, sharing exact locations with possibly untrustwor-
thy entities poses a thread to privacy. Geo-indistinguishability has
been recently proposed as a formal notion based on the concept
of differential privacy to design location privacy-preserving mech-
anisms in the context of sporadic release of location data. While
adaptations for the case of continuous location updates have been
proposed, the study on how the frequency of updates impacts the
privacy and utility level is yet to be made. In this paper we ad-
dress this issue, by analyzing the effect of frequency updates on
the privacy and utility levels of four mechanisms: the standard pla-
nar Laplacian mechanism suitable for sparse locations, and three
variants of an adaptive mechanism that is an adaptation of the stan-
dard mechanism for continuous location updates. Results show that
the frequency of updates largely impacts the correlation between
points. As the frequency of updates decreases, the correlation also
decreases. The adaptive mechanism is able to adjust the privacy and
utility levels accordingly to the correlation between past positions
and current position. However, the estimator function that is used
to predict the current location has a great influence in the obtained
results.
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1 INTRODUCTION
The pervasiveness of smart devices and the always on and always
connected paradigm has fostered applications that benefit from
sensing the environment to provide contextualized services to its
users. One category that has recently seen enormous growth in
this space is the Location-Based Services (LBS) [5], in where mobile
devices, such as smartphones, share their current position in order
to obtain related information (e.g. finding the nearest restaurants).
However, LBS providers may not be trustworthy as data may be
shared with third-parties for business or financial advantages, thus
posing a threat to users’ privacy.

In this scenario, user’s privacy can only be preserved by applying
privacy-preserving mechanisms at collection time [9] (i.e. before
the data leaves the mobile device), such that the true locations
are obfuscated before reaching LBS providers. This transformation
of the original data is therefore used in order to retain a certain
level of privacy at the expense of data utility, i.e. at the expense
of a degraded service due to the degradation in the quality of the
reported data.

Geo-indistinguishability [2] has been introduced as a formal
notion based on the concept of differential privacy [6] to design user-
centric location privacy-preserving mechanisms. Geo-indistingui-
shability guarantees that any two points within a radius r around
the user are statistically indistinguishable, that is, the reported
(obfuscated) point is generated with (almost) the same probability
for any point within the circle with radius r , thus concealing the
exact location of the user.

In the seminal work of geo-indistinguishability [2], a mecha-
nism named Planar Laplace (PL) achieving this privacy notion is
presented, in where noise is added independently to each true loca-
tion. However, the authors note on how privacy is degraded with
the number of queries due to the geo-temporal correlation of sub-
sequent points [4] and conclude that such system is satisfactory
as long as the number of queries remains fairly low. This may be
valid for sporadic LBS, i.e. applications where users expose their
location sparsely over time [12]. However it is not satisfactory for
continuous collection of location data, i.e. location traces.

For the case of location traces, correlation between geographical
points can be explored to track users over time and space and even
predict future locations [8]. In this scenario, the tracking success
will largely depend on the obfuscationmechanism used by users and
the referred correlation between points, which will in turn depend
on the frequency of location updates. At the same time, adaptations
of the PL mechanism have been proposed to explore this correlation
to increase privacy and/or utility [1, 4, 13]. However, the study on
how the frequency of updates affects the correlation between points,
which in turn affect the privacy level and utility of the data under
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a geo-indistinguishable privacy-preserving mechanism is yet to be
made.

In this work, we address this gap by exploring the effects of vary-
ing the frequency of updates in the privacy level and data utility of
Location-Based Services. We perform an analysis on the effect of
the frequency of updates with a real fine-grained dataset of mobil-
ity traces, that is comprehensive enough to allow us to fine-tune
the frequency of updates by periodically suppressing points. This
approach allows us to assess the impact on geo-indistinguishability
of varying frequency of location updates, from more continuous
to more sparse datasets. Furthermore, we evaluate both data util-
ity and the privacy level under this frequency tuning using two
geo-indistinguishability mechanisms: the PL mechanism and an
existing adaptation proposed in [1] for location traces by taking
into account the correlation between locations. We also extend the
study of [1] by using two other prediction methods aside from the
simple linear regression used in the original work.

The remainder of this paper is organized as follows. Section 2
gives the formal definition on geo-indistinguishability and presents
the Planar Laplace mechanism and an adaptation for the case of
continuous traces proposed in [1]. Section 3 details the problem
to be tackle and our experimental setup, Section 4 reports on the
results and Section 5 concludes this work.

2 BACKGROUND
With the increase in popularity of applications where location
is shared, researchers have studied the privacy implications and
proposed several privacy-preserving mechanisms [7]. These mech-
anisms largely defer on the objective to be protected, which can
either be protecting users’ identity, location(s), points of interest, so-
cial connections or even habits. And for each goal, applications may
have different requirements, which impose different constraints.

Recently, geo-indistinguishability [2] has been proposed as a
formal notion of location privacy based on the concept of differen-
tial privacy [6]. In the context of statistical databases, differential
privacy guarantees that the presence or absence of a single indi-
vidual in a database does not considerably impact the disclosure
of information. In fact, information disclosure in differential pri-
vacy is quantitatively measured as the difference between the prior
knowledge and the posterior knowledge which is bounded to a
small pre-defined constant. Geo-indistinguishability on the other
hand guarantees that the disclosed location is indistinguishable
from any other point within a variable radius, thus concealing the
exact location, while allowing for enough information release.

Geo-indistinguishability is formally defined as follows. Consider
a location privacy mechanism as a probabilistic function K (·) that
assigns to each location x ∈ X a probability distribution onZ, the
set of all possible obfuscated locations, whereX andZ are assumed
to be discrete to simplify notation. A mechanism K satisfies ϵ-geo-
indistinguishability iff:

dP
(
K (x ),K (x ′)

)
≤ ϵdx (x ,x

′) ∀x ,x ′ ∈ X (1)

where dx (·) is any distance function and dP (·) is the multiplica-
tive distance between two distributions, defined as dP (σ1,σ2) =
supS ∈S

����log
σ1 (S )
σ2 (S )

����, where σ1 and σ2 are two distributions on some

set S , with the convention that L =
����log

σ1 (S )
σ2 (S )

���� = 0 if σ1 (S ) =
σ2 (S ) = 0 and L = ∞ if one of the two is 0.

Intuitively, equation 1 states that the probability of reporting
location z while standing in location x is similar to that of standing
in any location x ′. In fact, both probabilities differ at most by the
distance between x and x ′ factored by a small constant ϵ , where ϵ
may be used to tune geo-indistinguishability. Commonly, and as
specified in the seminal work [2], this constant is set to ϵ = l/r , such
that for anyx ,x ′ s.t.dx (x ,x ′) ≤ r ,dP (K (x ),K (x ′)) ≤ l , wheredx is
an arbitrary metric. This enforces that closer x and x ′ locations will
have similar probability functions, thus better concealing the true
location, while allowing higher dissimilarity for distant locations,
thus preserving some degree of utility.

The seminal work on geo-indistinguishability [2] briefly dis-
cussed on how privacy is degraded linearly with the number of
queries sent by a user. In fact, the authors show that a user perform-
ing n queries through a ϵ-geo-indistinguishable mechanism enjoys
nϵ-geo-indistinguishability, which is only acceptable for a small n.

A natural extension for the case of continuous traces was pro-
posed by Chatzikokolakis et al. [4] consisting in using the distin-
guishability metric as dx = d∞, where, for two mobility traces x
and x’, d∞ (x ,x ′) = maxi dx (x[i],x ′[i]), i.e., two traces are as distin-
guishable as their two most distinguishable points [4]. Using this
notion, traces can be protected by applying noise to each location in-
dependently as long as the noise mechanism satisfies ϵ-differential
privacy. In this case, the trace will be nϵd∞-private [4], which still
has the privacy linear degradation w.r.t. the number of queries.

The work in [1] explores the potential threat that arises from
exploiting the correlation of subsequent reported locations under
continuous (LBS) queries. This correlation can be used to degrade
the privacy level of a user using geo-indistinguishability. The au-
thors thus propose to employ a dynamic ϵ that is used to either
increase the privacy level, if the correlation of the new location
with past locations is high, or to increase utility if the correlation
is low. The correlation is measured as the (inverse of the) error
between an estimation/prediction and the exact location, where
the estimation/prediction is computed using a simple linear regres-
sion. Formally, let x be the real location, x̂ the estimation, d2 (·) the
euclidean distance, ∆1 and ∆2 two thresholds, where ∆2 > ∆1, and
0 < α < 1 and β > 1 two constants. Then ϵ is defined as:

ϵ =




α ∗ ϵ, for d2 (x , x̂ ) < ∆1
ϵ, for ∆1 ≤ d2 (x , x̂ ) < ∆2
β ∗ ϵ, for d2 (x , x̂ ) ≥ ∆2

(2)

Equation (2) simply states that if the error between prediction and
the exact location is lower than a small threshold ∆1 (first branch),
thus stating that a high correlation between past and current lo-
cation exists, then privacy should be enhanced. This is done by
decreasing ϵ by a factor α < 1. However, if the distance is bigger
than a larger threshold ∆2 (third branch), then utility may be en-
hanced as the correlation between points is low. Thus, ϵ is increased
by the factor β > 1. Otherwise, the error is at an acceptable interval
[∆1,∆2[ and thus ϵ remains unchanged.

Finally, it should be noted that mechanisms achieving optimal
privacy or utility for sporadic updates only have been proposed [3,
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11]. Such techniques can only be implemented for discrete scenarios,
that is, scenarios where the set of locations is countable and finite.

3 IMPACT OF FREQUENCY ON PRIVACY AND
UTILITY

The objective of this work is to evaluate the impact of the fre-
quency of updates on the privacy and utility of LBS users using
geo-indistinguishability privacy mechanisms. We focus on two
mechanisms that are suitable to be ran on mobile devices due to
their computational efficiency: the PL mechanism (henceforth also
referred to as standard mechanism) [2] and the adaptive mecha-
nism [1] as described in Section 2. For the adaptive mechanism, we
consider different prediction/estimation mechanisms: apart from
the simple linear regression, we also consider the parrot function [4],
a simple method in which the estimation/prediction corresponds
to the last observation, and a polynomial regression that allows for
a non-linear estimation.

The following subsections will formally define the problem, de-
scribe the dataset used in this work and detail the supra-cited pri-
vacy mechanisms and prediction methods.

3.1 Problem Definition
Consider users that report their location to a LBS provider at differ-
ent update rates, while attempting to preserve their location privacy.
To avoid unwanted disclosure the protection mechanim must act
at collection time, that is, at the mobile device and in an online
fashion. Thus, for each location update at time i , a user instead of re-
porting his true location, xi , reports zi , an ϵi -geo-indistinguishable
location with respect to xi . Note that ϵi refers to both the standard
mechanism, where ∀i ϵi = ϵ , and to the adaptive method, where
ϵi is set as defined in (2). Similarly to other works [2], we consider
that the LBS knows the identity of users, and thus the focus is on
the protection of the location and not of the identity of the users
themselves.

The privacy level will bemeasured as the estimation errord2 (xi , x̂i ),
where d2 (·) is the euclidean distance and x̂i is an estimation of the
true location xi . The utility level will be measured as d2 (xi , zi ),
that is, the euclidean distance between the true location and the
reported value.

Although the expected estimation error depends on the predic-
tion method, we chose this metric to quantify the privacy level
as it better transmits the privacy concerns of the users. In fact, ϵ
only gives a quantitative approach to the amount of information
that is released, which may be misleading in terms of the privacy
level [10].

3.2 Experimental Setup
To evaluate the impact of frequency on the privacy and utility levels,
we have subsampled a dataset (see Subsection 3.3 for details) for
various minimum time interval between sequential points, ∆t , in
seconds. Specifically, two sequential points in a trace must have a
time difference of at least ∆t . Thus, increasing ∆t corresponds to a
decrease in the frequency of updates.

For each subsampled dataset, we have the true location xi , and
compute zi , the geo-indistinguishable version of xi using the stan-
dard PL method and each of the adaptive variants. However, before

Figure 1: Boxplot of the time interval between two succes-
sive points under each of the ∆t subsampling. Outliers repre-
sented as black stars can be perceived as time gaps between
successive updates.

obtaining zi in the adaptive variants, through the considered pre-
diction methods we compute an estimation/prediction x̂i of the
true location, that is then used in equation (2). For that, we consider
a time-window specified by ws historical points that is used to
approximate the parameters of the regression model. Since there
are no guarantees on which ws is best, for a given subsampled
dataset we compute the results for an array of possiblews values
and select the result with the lowest median estimation error over
all estimated points. We use the median of the estimation error as
base line for our comparisons, as the median rectifies the skewness
of the results due to the existence of outliers in the estimations, as
illustrated in Subsection 3.3. Selecting the lowest median estimation
error translates in a better evaluation of the privacy level, and in
fact, these values correspond to the lower bound in the privacy
level within the considered set ofws values.

For the adaptive geo-indistinguishability, the following three
estimator/predictor methods were used: simple linear regression, a
parrot function and polynomial regression. The parrot function sim-
ply returns the previous value as the prediction. This estimator was
used in [4] with the reasoning that for highly continuous updates,
using the previous value as an estimator incurs in a small error. In
both types of regression (linear and polynomial), the cost function
used was the linear least squares function and the prediction was
made for a single independent variable, that is, the prediction for
the longitude was made independently of the prediction for the
latitude. For the polynomial degree d , there is no obvious choice as
there is high uncertainty in the velocity and movement patterns,
specially when tuning the frequency of updates. Therefore, in each
point we compute the estimation error for each ∆t , each ws and
for each polynomial order in the set d ∈ [2, 3, 5, 7, 9, 11]. From all
these, we select only the one with lowest estimation error. Thus,
and similarly to the number of numerical points (ws) considered,
the polynomial degree d may vary for each point. Finally note that
using a linear regression with only two past points corresponds to
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(a) Representation of the original trace points and respective estima-
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(b) Plot of the time between two successive updates (effective ∆t ) in
the trace and respective average value.

Figure 2: Example of the effect of the time gaps between successive updates in the estimations. This example corresponds to
trace 2 of user 1 usingws = 2 and ∆t = 320s.

Table 1: Experiment’s parameters

Parameter Designation and Values
∆t Minimum time between successive points:

10, 20, 40, 80, 160, 320, 640
ϵ Geo-indistinguishable privacy parameter: 0.001, 0.01, 0.1, 1

∆1 Estimation error lower threshold for equation (2): 0.96/ϵ
∆2 Estimation error higher threshold for equation (2): 2.7/ϵ
α Constant to decrease ϵ in equation (2): 0.1
β Constant to increase ϵ in equation (2): 5

ws Number of past points to consider in the prediction
2, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50

d Degree for the polynomial regression: 2, 3, 5, 7, 9, 11

using the average velocity between these two previous points to
estimate the next position.

While one can argue that better methods for estimating the
position can be used, such as using a probabilistic inference based
on past positions [12], we note that our estimators make use of the
real locations in the estimation, which in turn are not disclosed to
the provider. Therefore, while the estimation may not be optimal,
the data used for the estimation is, thus representing a worst-case
scenario as a measure of privacy.

Table 1 summarizes the parameters used in the experiments. The
parameters for the adaptive mechanism including ϵ are the same
used in the original proposal work [1] with the exception of ws
where the value 100 was removed, since very few traces presented
more than 100 points for ∆t = 640s.

3.3 Dataset Characterization
The dataset used in this work is the Geolife dataset [14], a well
known repository of GPS traces collected from 182 worldwide users
in the period from April 2007 to August 2012. It contains a total
of 18670 trajectories reflecting the movements under a variety of

transportation means, where 91% of these have a sampling rate of
1 to 5 seconds or 5 to 10 meters per point.

Since we are varying the frequency of updates by subsampling
points in traces, pre-processing was applied to the dataset as to keep
only traces with a sufficiently large time-span. Specifically, we have
removed traces that for the sparsest condition (i.e. time interval
between points of at least ∆t = 640s) had a number of points lower
or equal to the maximum used window size (see table 1). Note that
for smaller ∆t , the removed traces could present more points than
the maximum window size, however this data cleaning guarantees
that all remaining traces were evaluated for all ∆t and all window
sizes used in this work.

After this pre-processing, the dataset contains 312 trajectories
from 79 users spawning from April 2007 to May 2012 and a total of
3953369 location reports with an average update rate of 2.64s . This
represents an average number of points per trajectory of approxi-
mately 12671.

While the dataset has been subsampled with different frequency
of updates ∆t , we only ensured that each successive update had a
time interval of at least ∆t . However, the Geolife dataset presents
a high quantity of discontinuities or gaps between successive up-
dates. Figure 1 presents a boxplot of the time interval between two
successive updates under each ∆t , where the outliers represent
these temporal gaps. These time-gaps often correspond to long
periods where the user stayed in the same place, which critically
impacts the quality of the regression (see also Figure 2a), not only
on that specific point, but also when these points are present in the
historical window ofws points.

The plots in Figure 2 show an example of this impact for a par-
ticular trace. Figure 2a presents the original trajectory and the
estimations for each of the estimator functions, where one can see
that both the linear and the polynomial regression have some out-
liers. Figure 2b shows the time interval between each successive
point in this trace, where it is clear that some intervals are greatly



On the Effect of Update Frequency on
Geo-Indistinguishability of Mobility Traces WiSec ’18, June 18–20, 2018, Stockholm, Sweden

10 20 40 80 160 320 640
Minimum sample interval t (s)

0

200

400

600

800

Es
tim

at
io

n 
er

ro
r (

m
)

Median Estimation Errors
linear
parrot
polynomial

(a)Median of estimation errors per∆t for all
adaptive geo-indistinguishable variants.
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(b)Median of utility errors per ∆t for all geo-
indistinguishable variants with ϵ = 0.001.
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(c) Median of utility errors per ∆t for all geo-
indistinguishable variants with ϵ = 0.01.

Figure 3: Plots of the estimation errors and utility errors per ∆t .

larger than the defined minimum time between intervals ∆t , which
was 320s in this example. These peaks represent the referred tempo-
ral gaps and are the cause for the major outliers in the estimation.
In fact, these gaps affect not only a certain point being estimated,
but all subsequent points that include this point in the historical
window defined byws .

While this example illustrates a particular trajectory, this occurs
in most traces and in all considered ∆t (as depicted on Figure 1).
Finally note that while these temporal outliers may impact our esti-
mation of the correlation between points, it has limited impact on
our findings because the dataset is rich enough so that by increasing
increasing ∆t we are effectively reducing the overall frequency of
updates. Furthermore, a worse prediction due to outliers means
that there is low correlation between points, which will be used by
the adaptive geo-indistinguishable mechanism as a metric to say
that the point has an acceptable level of privacy and thus utility
can be increased (c.f. equation 2)

4 RESULTS AND ANALYSIS
This section presents our results. We limit our analysis to the case
ϵ = 0.001 and to the median values. However, we note that the
conclusions hold for the remaining values of ϵ .

Figure 3a presents the median estimation errors as a function
of ∆t for each geo-indistinguishable mechanism considered. It can
be seen clearly from this figure that the parrot estimator had the
best performance, even for the lowest frequencies (e.g. ∆t ≥ 160s).
This was somehow unexpected, since by using a single point for
prediction, the parrot should be affected greatly by the decrease
in frequency, which is expected to happen if we consider even
larger ∆t values. However, we found that the cause for the higher
estimation errors in the linear and polynomial regression are re-
lated to discontinuities in the frequency update as explained in
Subsection 3.3.

Figure 3a also shows that the estimation degrades as the interval
between successive points (∆t ) increases. That is, as the frequency
of updates decreases, the correlation between points also decreases.
This result is also visible in Figure 3b, which shows the median of
utility errors for each privacy mechanism as a function of ∆t . Note
that in the standard mechanism, since ϵ is constant and each point
is treated independently, the median utility error is constant. In fact,

Figure 4: Boxplot of the estimation errors for ∆t = 40s and
ϵ = 0.001. Outliers represented as black stars, that due to the
density formblack solid lines, and the y axes limited to 3100.

it can be show that the standard mechanism presents an average
utility error equal to 2/ϵ [3], which is in line with our results.

From equation (2) we have that if the estimation error is lower
than a small threshold ∆1, which for ϵ = 0.001 has the value ∆1 =
960, then the privacy level must be increased. This can be seen
clearly in Figure 3b where the utility error is the highest for smaller
∆t , as the estimation errors are the lowest (c.f. Figure 3a). As the
estimation errors increase, the utility error starts to decrease. This
starts occurring for ∆t = 40s for the parrot and for ∆t = [80, 160]s
for the regressions as some of the estimation errors start to be
higher than ∆1 = 960, as shown in Figures 4 and 5, respectively.
For higher ∆t , the estimation errors of the linear and polynomial
regression are considerably greater than the parrot estimations,
and in fact a great amount of errors is over ∆2 = 2700, in where ϵ
is adjusted to improve utility and thus, the utility error is greatly
decreased as observed in Figure 3b. Finally we note that for this
value of ϵ the adaptive mechanism has a higher utility error than the
standard mechanism for all ∆t . However, this is not the case for all ϵ
values as illustrated in Figure 3c. This figure presents the estimation
errors per ∆t for ϵ = 0.01, where it is clear that for ∆t ≥ 160 the
adaptive mechanism has better utility than the standard. We omit
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Figure 5: Boxplot of the estimation errors for ∆t = 160s and
ϵ = 0.001. Outliers represented as black stars, that due to the
density formblack solid lines, and the y axes limited to 6000.

the analysis for the remaining values of ϵ as the elated conclusions
are transversal to these values.

Although the different prediction models lead to varying results
from a privacy and utility perspectives, the general behavior is the
same. In particular, the estimation error is bound to increase as
the frequency of updates decreases, while the utility error decays
with increasing frequency of updates. Naturally, the use of different
prediction mechanisms can lead to different results. This calls for
alternative approaches to geo-indistinguishability that take into
consideration not only the correlation between points, but also the
frequency of updates in a way that is oblivious to the prediction
mechanisms employed.

5 CONCLUSION
Geo-indistinguishability has been proposed as a notion of privacy to
design privacy-preserving mechanisms for location-based services
for the sporadic release of location updates. While some adaptations
to the continuous release of data have been proposed, no study has
evaluated the impact of the frequency of updates on the privacy
and utility levels attained.

Our experiments using a real-world dataset under several fre-
quency of updates show that frequency has a great impact on the
correlation between successive points, which in turn affect the pri-
vacy and utility of privacy-preserving location mechanisms. We
have shown that the adaptive geo-indistinguishable mechanism is
able to adapt the privacy and utility level by adjusting ϵ according
to the correlation between past and current position. However, the
measure of correlation, which quantitatively measures the privacy
level, largely depends on the prediction function, thus calling for
geo-indistinguishability privacy mechanisms for continuous col-
lection of data that are oblivious to the prediction mechanisms
employed.
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