Gurobi 5.0.1 (linux64) logging started Sun Nov 18 00:47:45 2012

Optimize a model with 1 rows, 53 columns and 53 nonzeros
Model has 157 quadratic objective terms
Modified 53 Q diagonals
Presolve time: 0.01s
Presolved: 1 rows, 53 columns, 53 nonzeros
Presolved model has 210 quadratic objective terms
Variable types: 0 continuous, 53 integer (53 binary)
Found heuristic solution: objective 86.0000000

Root relaxation: objective 0.000000e+00, 55 iterations, 0.00 seconds

    Nodes    |    Current Node    |     Objective Bounds      |     Work
 Expl Unexpl |  Obj  Depth IntInf | Incumbent    BestBd   Gap | It/Node Time

     0     0    0.00000    0   53   86.00000    0.00000   100%     -    0s
H    0     0                      68.0000000    0.00000   100%     -    0s
H    0     0                      67.0000000    0.00000   100%     -    0s
H    0     0                      66.0000000    0.00000   100%     -    0s
H    0     0                      46.0000000    0.00000   100%     -    0s
     0     2    2.42334    0   53   46.00000    2.42334  94.7%     -    0s
H  486   397                      43.0000000    7.21825  83.2%   2.4    0s
H  650   506                      40.0000000    7.21926  82.0%   2.5    0s
H 2471  1264                      39.0000000   14.75012  62.2%   2.5    0s
 54362 29844   28.84899   28   37   39.00000   24.58558  37.0%   2.4    5s
 110973 56454   36.10007   36   26   39.00000   26.40877  32.3%   2.4   10s
 167173 80148   31.15186   28   35   39.00000   27.47317  29.6%   2.4   15s
 223485 101763   36.38043   31   34   39.00000   28.22016  27.6%   2.4   20s
 279551 121892   37.16759   33   30   39.00000   28.81723  26.1%   2.4   25s
 335746 140585   37.18227   29   34   39.00000   29.28771  24.9%   2.4   30s
 391850 158195   36.60748   32   32   39.00000   29.69023  23.9%   2.4   35s
 447754 174579   34.61720   32   31   39.00000   30.03380  23.0%   2.4   40s
 503358 189883   30.34934   26   39   39.00000   30.34934  22.2%   2.4   45s
 559083 204276   30.62387   28   35   39.00000   30.62387  21.5%   2.4   50s
 614928 217888   32.86649   30   34   39.00000   30.87577  20.8%   2.4   55s
 670260 230397   36.18802   31   32   39.00000   31.09965  20.3%   2.4   60s
 725307 242141   34.21194   32   33   39.00000   31.30941  19.7%   2.4   65s
 780659 253318   37.49352   32   30   39.00000   31.50724  19.2%   2.4   70s
 835752 263833   37.92739   36   27   39.00000   31.68879  18.7%   2.4   75s
 890848 273653   36.17436   37   27   39.00000   31.85715  18.3%   2.4   80s
 945933 282838   36.31745   35   30   39.00000   32.02153  17.9%   2.4   85s
 1001222 291489   35.58203   35   28   39.00000   32.17512  17.5%   2.4   90s
 1056430 299436   37.95231   33   29   39.00000   32.31953  17.1%   2.4   95s
 1111735 307010   37.24706   32   33   39.00000   32.46305  16.8%   2.4  100s
 1166885 313949   32.59731   32   32   39.00000   32.59639  16.4%   2.4  105s
 1222024 320136   37.47353   31   34   39.00000   32.72670  16.1%   2.4  110s
 1277102 325656   36.45199   36   25   39.00000   32.84966  15.8%   2.4  115s
 1332213 330699   37.17878   31   32   39.00000   32.97003  15.5%   2.4  120s
 1387092 335161   35.12106   30   33   39.00000   33.08671  15.2%   2.4  125s
 1441956 339041   33.19679   28   37   39.00000   33.19679  14.9%   2.4  130s
 1496732 342239   36.45893   33   32   39.00000   33.30303  14.6%   2.4  135s
 1551500 344710   37.61841   30   35   39.00000   33.40607  14.3%   2.4  140s
 1606492 346778   33.50862   29   34   39.00000   33.50862  14.1%   2.4  145s
 1661248 348356   36.75601   37   23   39.00000   33.60863  13.8%   2.4  150s
 1716218 349326   35.64932   33   31   39.00000   33.70645  13.6%   2.4  155s
 1770704 349729     cutoff   34        39.00000   33.80031  13.3%   2.4  160s
 1825520 349471   37.99510   37   25   39.00000   33.89271  13.1%   2.4  165s
 1880115 348843   34.47566   31   34   39.00000   33.98209  12.9%   2.4  170s
 1934759 347501   37.39992   34   31   39.00000   34.07100  12.6%   2.4  175s
 1989686 345637   36.20883   36   27   39.00000   34.15987  12.4%   2.4  180s
 2044268 343225   37.67138   38   23   39.00000   34.24496  12.2%   2.4  185s
 2098747 340220   34.97828   30   33   39.00000   34.32881  12.0%   2.4  190s
 2153121 336737   37.33580   32   33   39.00000   34.41363  11.8%   2.4  195s
 2207361 332691     cutoff   38        39.00000   34.49697  11.5%   2.4  200s
 2261177 328160   36.06281   36   29   39.00000   34.57966  11.3%   2.4  205s
 2315042 323083   35.91681   33   30   39.00000   34.66239  11.1%   2.4  210s
 2368260 317457   37.67999   38   26   39.00000   34.74545  10.9%   2.4  215s
 2421452 311290   36.65597   35   28   39.00000   34.82748  10.7%   2.4  220s
 2474120 304731   37.33376   33   32   39.00000   34.91016  10.5%   2.4  225s
 2526666 297572   34.99259   32   30   39.00000   34.99258  10.3%   2.4  230s
 2579203 289939   36.97256   32   30   39.00000   35.07716  10.1%   2.4  235s
 2631308 281843   36.14538   32   30   39.00000   35.16254  9.84%   2.4  240s
 2683205 273118   35.82335   30   33   39.00000   35.24874  9.62%   2.4  245s
 2734746 263890   36.39033   37   28   39.00000   35.33473  9.40%   2.4  250s
 2785972 254041   36.68783   33   30   39.00000   35.42410  9.17%   2.4  255s
 2837156 243634   36.80589   32   31   39.00000   35.51707  8.93%   2.4  260s
 2888464 232440   37.15913   31   33   39.00000   35.61354  8.68%   2.4  265s
 2939811 220483   37.21524   35   26   39.00000   35.71634  8.42%   2.4  270s
 2991214 207736   37.82428   35   27   39.00000   35.82442  8.14%   2.4  275s
 3042549 193981   36.78822   34   30   39.00000   35.93981  7.85%   2.4  280s
 3093879 179248   36.06329   33   32   39.00000   36.06329  7.53%   2.4  285s
 3145264 163355   37.44483   32   31   39.00000   36.19779  7.19%   2.4  290s
 3196697 146093   37.77895   32   30   39.00000   36.34594  6.81%   2.4  295s

Explored 3248615 nodes (7773953 simplex iterations) in 300.00 seconds
Thread count was 1 (of 16 available processors)

Time limit reached
Best objective 3.900000000000e+01, best bound 3.700000000000e+01, gap 5.1282%