Maximizing Expectation on Vertex-disjoint Cycle Packing

João Pedro PEDROSO

INESC Porto and Universidade do Porto, Portugal ${ }^{1}$
jpp@fc.up.pt

International Conference on Computational Science and its Applications Guimarães, July 2014

[^0]
Background: kidney exchange programs

- in many countries, recent legislation allows patients needing a kidney transplant to receive it from a living donor
- what to do when the transplant from that donor is not possible?
- blood type
- other incompatibilities
- patient-donor pair may enter a kidney exchange program (KEP)
U. PORTO

Kidney exchanges

- idea: allow two (or more) patients in incompatible pairs to exchange their donors
- each recipient receives a compatible kidney from the donor of another pair

Kidney exchanges

- idea: allow two (or more) patients in incompatible pairs to exchange their donors
- each recipient receives a compatible kidney from the donor of another pair

Incompatible pairs $P_{1}-D_{1}$ and
$P_{2}-D_{2}$ exchange donors

- P_{1} receives a transplant from D_{2} and vice versa

Graph representation:

- vertices are patient-donor pairs
- arcs link a patient to compatible donors
U.Porto
$F \begin{gathered}\text { faculdade de ciencias } \\ \text { universidade do porto }\end{gathered}$

Kidney exchanges: example

- instance with five pairs
- what is the maximum number of transplants?
- what if the allowed number of simultaneous transplants is limited?
- how to optimize if there is some probability of vertex/arc failure?

FCc $\begin{gathered}\text { facuidade de ciencias } \\ \text { univerididade do porto }\end{gathered}$

Kidney exchanges: example

- feasible exchange: a set of vertex-disjoint cycles (e.g., 1 - $2-3-1$)
- size of an exchange: sum of the lengths of its cycles
- maximum exchange in this example: 4
(cycle 1-2-5-3-1)

FC $\begin{gathered}\text { faculdade de ciencias } \\ \text { universidade do porto }\end{gathered}$

Kidney exchanges: example

- feasible exchange: a set of vertex-disjoint cycles (e.g., 1-2-3-1)
- size of an exchange: sum of the lengths of its cycles
- maximum exchange in this example: 4
(cycle 1-2-5-3-1)
F Faculation ciencias

Kidney exchanges: example

- feasible exchange: a set of vertex-disjoint cycles (e.g., 1-2-3-1)
- size of an exchange: sum of the lengths of its cycles
- maximum exchange in this example: 4

$$
\text { (cycle } 1-2-5-3-1 \text {) }
$$

Kidney exchanges: example

- feasible exchange: a set of vertex-disjoint cycles (e.g., 1-2-3-1)
- size of an exchange: sum of the lengths of its cycles
- maximum exchange in this example: 4

$$
\text { (cycle } 1-2-5-3-1 \text {) }
$$

$F \begin{gathered}\text { anculdade de ciencias } \\ \text { univensidade do porto }\end{gathered}$

Kidney exchanges: maximum cycle size

- In many situations the length of each cycle is limited:
- limitations in the number of operation rooms
- number of surgeons available
- If maximum cycle size is $K=3$, several solutions are possible.

Fry faculdade de ciencias

Kidney exchanges: maximum cycle size

- In many situations the length of each cycle is limited:
- limitations in the number of operation rooms
- number of surgeons available
- If maximum cycle size is $K=3$, several solutions are possible.

F Faculdade de ciencias

Kidney exchanges: maximum cycle size

- In many situations the length of each cycle is limited:
- limitations in the number of operation rooms
- number of surgeons available
- If maximum cycle size is $K=3$, several solutions are possible.

Fs $\begin{gathered}\text { anculdade de ciencias } \\ \text { universidade do porto }\end{gathered}$

Kidney exchanges: maximum cycle size

- In many situations the length of each cycle is limited:
- limitations in the number of operation rooms
- number of surgeons available
- If maximum cycle size is $K=3$, several solutions are possible.

U. PORTO
$F \begin{gathered}\text { faculdade de ciencias } \\ \text { univerididade do porto }\end{gathered}$

Another example

©. Porto
FCus anculdade de ciencias

Another example

U．Porto
F faculdade de ciencias ミゆロの

Maximum cycle size and NP-hardness

- In many situations the length of each cycle is limited
- If length is not limited \longrightarrow assignment problem (polynomial algorithms are known, e.g., hungarian algorithm).
- If length is limited to $2 \longrightarrow$ matching problem (polynomial algorithms are known: Edmonds algorithm).
- If length is limited to $3,4, \ldots \longrightarrow$ problem is NP-hard (no polynomial algorithms are known).
$F \begin{gathered}\text { faculdade de ciencias } \\ \text { univerididade do porto }\end{gathered}$

Maximum cycle size and NP-hardness

- In many situations the length of each cycle is limited
- If length is not limited \longrightarrow assignment problem (polynomial algorithms are known, e.g., hungarian algorithm).
- If length is limited to $2 \longrightarrow$ matching problem (polynomial algorithms are known: Edmonds algorithm). - If length is limited to $3,4, \ldots \longrightarrow$ problem is NP-hard (no polynomial algorithms are known)
$F \begin{gathered}\text { faculdade de ciencias } \\ \text { universidade io porto }\end{gathered}$

Maximum cycle size and NP－hardness

－In many situations the length of each cycle is limited
－If length is not limited \longrightarrow assignment problem （polynomial algorithms are known，e．g．，hungarian algorithm）．
－If length is limited to $2 \longrightarrow$ matching problem （polynomial algorithms are known：Edmonds algorithm）．
－If length is limited to $3,4, \ldots \longrightarrow$ problem is NP－hard
（no polynomial algorithms are known）．

Maximum cycle size and NP-hardness

- In many situations the length of each cycle is limited
- If length is not limited \longrightarrow assignment problem (polynomial algorithms are known, e.g., hungarian algorithm).
- If length is limited to $2 \longrightarrow$ matching problem (polynomial algorithms are known: Edmonds algorithm).
- If length is limited to $3,4, \ldots \longrightarrow$ problem is NP-hard (no polynomial algorithms are known).

NP-hard problems

Mathematical programming formulations

- There are several possibilities for modeling the problem in mathematical programming
- One of the most successful is the cycle formulation:
- enumerate all cycles in the graph with length at most K
- for each cycle c, let variable x_{c} be 1 if c is chosen, 0 otherwise
- every feasible solution corresponds to a set of vertex-disjoint cycles

Cycle formulation

$$
\begin{array}{ll}
\text { maximize } & \sum_{c} w_{c} x_{c} \\
\text { subject to } & \sum_{c: i \in c} x_{c} \leq 1 \quad \forall i \tag{1b}\\
& x_{c} \in\{0,1\} \quad \forall c
\end{array}
$$

- case of $0-1$ weights: $w_{c}=|c|$, (length of cycle c)
- objective: maximize the weight of the exchange
- constraints: every vertex is at most in one cycle (i.e., donate/receive at most one kidney)
- difficulty: number of variables

Facic $\begin{gathered}\text { faculdade de ciéncias } \\ \text { universidade do porto }\end{gathered}$

Cycle formulation

- Exponential number of variables
- Not all are needed for solving the problem
- Use only those necessary \longrightarrow column generation

FC $\begin{gathered}\text { anculdade de ciencias } \\ \text { univesididade do porto }\end{gathered}$

Column generation

Fra saculdade de ciencias 트 \quad Q

Previous results

－Cycle formulation seems to be more than able to process foreseen number of patient－donor pairs in the KEP in Portugal
－Besides，it may allow to treat slightly different objectives：
－produce robust solutions
－maximize expectation of the number of transplants
－What if the＂market＂becomes the European Union？

U．PORTO
$F \begin{gathered}\text { faculdade de ciencias } \\ \text { universidade do porto }\end{gathered}$

Maximizing expectation

- Basis: cycle formulation
- On standard approach: cycle evaluation is the number of arcs in the cycle (i.e., the number of transplants)
- Our proposal: use the expectation of the number of transplants instead
- Problem: not straightforward to tackle...
(1) computation of the expectation is heavy, even for small cycles
(2) optimization is just a small part in the solution process...

F $\begin{gathered}\text { faculdade de ciencias } \\ \text { UNiverididade do porto }\end{gathered}$

Unreliable vertices

U. Porto
$F \begin{gathered}\text { faculdade de ciencias } \\ \text { univerididade do porto }\end{gathered}$

Unreliable vertices

U.Porto

FC $\begin{gathered}\text { anculdade de ciencias } \\ \text { univesididade do porto }\end{gathered}$三 \quad) $Q \subset$

Unreliable vertices

(4)

FC $\begin{gathered}\text { anculdade de ciencias } \\ \text { univesididade do porto }\end{gathered}$

Unreliable vertices

4

U. Porto
三 $\quad 9$ ค

Unreliable vertices

4

U.Porto

FC $\begin{gathered}\text { anculdade de ciencias } \\ \text { univesididade do porto }\end{gathered}$三 \quad)

Unreliable vertices

4

(1)

FC $\begin{gathered}\text { anculdade de ciencias } \\ \text { univesididade do porto }\end{gathered}$ 트 $๑) Q$

Unreliable arcs

©. Porto
$F \begin{gathered}\text { faculdade de ciencias } \\ \text { univerididade do porto }\end{gathered}$

Arc withdrawal

U. Porto
$F \begin{gathered}\text { faculdade de ciencias } \\ \text { univerididade do porto }\end{gathered}$

Arc withdrawal

U. PORTO
$F \begin{gathered}\text { faculdade de ciencias } \\ \text { univerididade do porto }\end{gathered}$

Arc withdrawal

U. Porto

Frus aculdade de ciencias三 \quad)

Arc withdrawal

3

U. Porto
$F \begin{gathered}\text { Faculdade de ciencias } \\ \text { univensidade do porto }\end{gathered}$
$\equiv \quad$ 오

Solution procedure

－Preprocessing
－Solution optimization
－Implementation

FC $\begin{gathered}\text { faculdade de ciencias } \\ \text { universidaide do porto }\end{gathered}$ ミ \ddagger のく

Solution procedure: preprocessing

- Preprocessing
(1) prepare a database of cycle configurations for the relevant sizes
(2) precompute formulas for expectations for these configurations HARD
(3) store this information in a database
- Example:
- Use the expectation as objective coefficient for each cycle

Frus aculdade de ciencias

Solution procedure: preprocessing

- Preprocessing
(1) prepare a database of cycle configurations for the relevant sizes
(2) precompute formulas for expectations for these configurations HARD
(3) store this information in a database
- Example:

- Use the expectation as objective coefficient for each cycle
U. PORTO

Solution procedure: preprocessing

- Preprocessing
(1) prepare a database of cycle configurations for the relevant sizes
(2) precompute formulas for expectations for these configurations HARD
(3) store this information in a database
- Example: expectation formula?

- Use the expectation as objective coefficient for each cycle
U. Porto
$F \begin{gathered}\text { FAculdade de ciencias } \\ \text { UNivensidade do porto }\end{gathered}$

Solution procedure: preprocessing

- Preprocessing
(1) prepare a database of cycle configurations for the relevant sizes
(2) precompute formulas for expectations for these configurations HARD
(3) store this information in a database
- Example: expectation formula?

- Use the expectation as objective coefficient for each cycle

Solution procedure: cycle configuration database

- Two-vertex graphs (1 graph)

- Three-vertex graphs (4 graphs)
- Four-vertex graphs (61 graphs)
- Five-vertex graphs (3725 graphs)

Solution procedure: cycle configuration database

- Two-vertex graphs (1 graph)

1	
vertices:	$2\left(1-p_{1}\right)\left(1-p_{2}\right)$
arcs:	$2\left(1-p_{12}\right)\left(1-p_{21}\right)$
both:	$2\left(1-p_{1}\right)\left(1-p_{2}\right)\left(1-p_{12}\right)\left(1-p_{21}\right)$

- Three-vertex graphs (4 graphs)

- Five-vertex graphs (3725 graphs)

Solution procedure: cycle configuration database

- Two-vertex graphs (1 graph)

1	
vertices:	$2\left(1-p_{1}\right)\left(1-p_{2}\right)$
arcs:	$2\left(1-p_{12}\right)\left(1-p_{21}\right)$
both:	$2\left(1-p_{1}\right)\left(1-p_{2}\right)\left(1-p_{12}\right)\left(1-p_{21}\right)$

- Three-vertex graphs (4 graphs)

- Four-vertex graphs (61 graphs)

- Five-vertex graphs (3725 graphs
$F \begin{gathered}\text { faculdade de ciéncias } \\ \text { universidade do porto }\end{gathered}$

Solution procedure: cycle configuration database

- Two-vertex graphs (1 graph)

```
1 vertices: \(2\left(1-p_{1}\right)\left(1-p_{2}\right)\)
```



```
arcs: \(\quad 2\left(1-p_{12}\right)\left(1-p_{21}\right)\) both: \(\quad 2\left(1-p_{1}\right)\left(1-p_{2}\right)\left(1-p_{12}\right)\left(1-p_{21}\right)\)
```

- Three-vertex graphs (4 graphs)

- Four-vertex graphs (61 graphs)

- Five-vertex graphs (3725 graphs)
U. PORTO

(1) Match enumerated graph with one in the database

(3) Extract expectation formula from the database $3-p_{21} p_{23}-p_{21} p_{31} p_{23}+p_{21} p_{32} p_{23}+p_{21} p_{31} p_{32} p_{23}+p_{31} p_{32} p_{23}-p_{32} p_{23}-p_{21} p_{31}-p_{21} p_{31} p_{32}$ $p_{31} p_{32}+p_{13}\left(p_{23}\left(p_{31}\right.\right.$ $p_{12}\left(-\left(P_{23}\left(p_{31}-1\right)+P_{31}+1\right) P_{32}+p_{21}\left(p_{23}\left(p_{31}-1\right)\left(p_{32}-1\right)+p_{32}+p_{31}\left(p_{32}+1\right)-1\right)+p_{13}\left(p_{23}\left(p_{31}\right.\right.\right.$
(3) Map probabilities from original graph to the one stored

(1) Compute expectation for the cycle $(2-5-3)$; it will be its coefficient at the objective
$F \begin{gathered}\text { faculdade de ciencias } \\ \text { universidade do porto }\end{gathered}$
(1) Match enumerated graph with one in the database

(3) Extract expectation formula from the database $3-p_{21} p_{23}-p_{21} p_{31} p_{23}+p_{21} p_{32} p_{23}+p_{21} p_{31} p_{32} p_{23}+p_{31} p_{32} p_{23}-p_{32} p_{23}-p_{21} p_{31}-p_{21} p_{31} p_{32}$ $p_{31} p_{32}+p_{13}\left(p_{23}\left(p_{31}\right.\right.$ $P_{12}\left(-\left(P_{23}\left(p_{31}-1\right)+P_{31}+1\right) P_{32}+P_{21}\left(P_{23}\left(P_{31}-1\right)\left(p_{32}-1\right)+P_{32}+P_{31}\left(P_{32}+1\right)-1\right)+P_{13}\left(P_{23}\left(P_{31}\right.\right.\right.$
(3) Map probabilities from original graph to the one stored

(4. Compute expectation for the cycle $(2-5-3)$; it will be its coefficient at the objective
$F \begin{gathered}\text { faculdade de ciencias } \\ \text { universidade do porto }\end{gathered}$
(1) Match enumerated graph with one in the database

(2) Extract expectation formula from the database

$$
\begin{aligned}
& 3-p_{21} p_{23}-p_{21} p_{31} p_{23}+p_{21} p_{32} p_{23}+p_{21} p_{31} p_{32} p_{23}+p_{31} p_{32} p_{23}-p_{32} p_{23}-p_{21} p_{31}-p_{21} p_{31} p_{32}- \\
& p_{31} p_{32}+p_{13}\left(p_{23}\left(p_{31}-1\right)\left(-p_{32}+p_{21}\left(p_{32}+1\right)+1\right)-\left(p_{21}-1\right) p_{31}\left(p_{32}-1\right)\right)+ \\
& p_{12}\left(-\left(p_{23}\left(p_{31}-1\right)+p_{31}+1\right) p_{32}+p_{21}\left(p_{23}\left(p_{31}-1\right)\left(p_{32}-1\right)+p_{32}+p_{31}\left(p_{32}+1\right)-1\right)+p_{13}\left(p _ { 2 3 } (p _ { 3 1 } + 1) \left(p_{3}\right.\right.\right.
\end{aligned}
$$

(3) Map probabilities from original graph to the one stored

p_{2}	\leftrightarrow	p_{1}	p_{25}	\leftrightarrow	p_{12}
p_{5}	\ddots	p_{2}	p_{52}	\leftrightarrow	p_{21}
p_{3}	\leftrightarrow	p_{3}	p_{35}	\square	p_{23}
p_{23}		p_{31}			

(4. Compute expectation for the cycle $(2-5-3)$; it will be its coefficient at the objective

FCu $\begin{gathered}\text { faculdade de ciencias } \\ \text { universidane do porto }\end{gathered}$
(1) Match enumerated graph with one in the database

(2) Extract expectation formula from the database
$3-p_{21} p_{23}-p_{21} p_{31} p_{23}+p_{21} p_{32} p_{23}+p_{21} p_{31} p_{32} p_{23}+p_{31} p_{32} p_{23}-p_{32} p_{23}-p_{21} p_{31}-p_{21} p_{31} p_{32}-$ $p_{31} p_{32}+p_{13}\left(p_{23}\left(p_{31}-1\right)\left(-p_{32}+p_{21}\left(p_{32}+1\right)+1\right)-\left(p_{21}-1\right) p_{31}\left(p_{32}-1\right)\right)+$
$p_{12}\left(-\left(p_{23}\left(p_{31}-1\right)+p_{31}+1\right) p_{32}+p_{21}\left(p_{23}\left(p_{31}-1\right)\left(p_{32}-1\right)+p_{32}+p_{31}\left(p_{32}+1\right)-1\right)+p_{13}\left(p_{23}\left(p_{31}+1\right)\left(p_{3}\right.\right.\right.$
(3) Map probabilities from original graph to the one stored

p_{2}	\leftrightarrow	p_{1}	p_{25}	\rightarrow	p_{12}
p_{5}	\leftrightarrow	p_{2}	${ }_{\text {P53 }}$	\leftrightarrow	${ }^{2}$
p_{3}	\leftrightarrow	p_{3}	${ }^{p_{32}}$	$\stackrel{\leftrightarrow}{\leftrightarrow}$	${ }_{p^{\text {P31 }}}$

(4) Compute expectation for the cycle (2-5-3); it will be its

FCus anculdade de ciencias
(1) Match enumerated graph with one in the database

(2) Extract expectation formula from the database
$3-p_{21} p_{23}-p_{21} p_{31} p_{23}+p_{21} p_{32} p_{23}+p_{21} p_{31} p_{32} p_{23}+p_{31} p_{32} p_{23}-p_{32} p_{23}-p_{21} p_{31}-p_{21} p_{31} p_{32}-$ $p_{31} p_{32}+p_{13}\left(p_{23}\left(p_{31}-1\right)\left(-p_{32}+p_{21}\left(p_{32}+1\right)+1\right)-\left(p_{21}-1\right) p_{31}\left(p_{32}-1\right)\right)+$
$p_{12}\left(-\left(p_{23}\left(p_{31}-1\right)+p_{31}+1\right) p_{32}+p_{21}\left(p_{23}\left(p_{31}-1\right)\left(p_{32}-1\right)+p_{32}+p_{31}\left(p_{32}+1\right)-1\right)+p_{13}\left(p_{23}\left(p_{31}+1\right)\left(p_{3}\right.\right.\right.$
(3) Map probabilities from original graph to the one stored

p_{2}	\leftrightarrow	p_{1}	p_{25}	\leftrightarrow	p_{12}
p_{5}	\leftrightarrow	p_{2}	p_{52}	p_{53}	\leftrightarrow
p_{21}					
p_{3}	\leftrightarrow	p_{23}			
	p_{3}	p_{32}	\leftrightarrow	p_{31}	
p_{23}	\leftrightarrow	p_{13}			

(9) Compute expectation for the cycle (2-5-3); it will be its coefficient at the objective

Solution procedure: solution optimization

- Solution optimization
(1) read instance: compatibility between pairs, failure probability for vertices/arcs
(2) prepare compatibility graph
(3) enumerate cycles of relevant size
(4) setup optimization model
(1) one variable for each cycle
(2) constraints: each vertex in at most one cycle
(3) objective coefficient: expectation of number of transplants HARD
(5) solve optimization model easy?!!

Solution procedure: implementation

- Implementation
(1) contact selected pairs
(2) verify solution (check back outs)
(3) make last-minute compatibility check
(4) make transplants
$F \begin{gathered}\text { Faculdade de ciencias } \\ \text { UNiversidane do porto }\end{gathered}$

Results: cross-formulation performance

IMPACT OF SWAPPING SOLUTIONS

Conclusions

- There are many applications of information technologies in health care
- Applications involve many disciplines in computer science and informatics
- KEP: case where welfare of patients can be maximized
- number of transplants
- robustness of the solution
- quality of the solution (maximize patient-donor compatibility)
- Careful implementation of operations research program leads to significant social benefits
$F \underset{\substack{\text { faculdade de ciencias } \\ \text { univenididade do porto }}}{ }$

[^0]: ${ }^{1}$ This work is financed by the ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project Kidney Exchange Programme, PTDC/EGE-GES/110940/2009, and includes contributions from its research team.

