Maximizing Expectation on Vertex-disjoint Cycle Packing

João Pedro PEDROSO

INESC Porto and Universidade do Porto, Portugal ¹

International Conference on Computational Science and its Applications Guimarães, July 2014

¹This work is financed by the ERDF - European Regional Development Fund through the COMPETE Programme (operational programme for competitiveness) and by National Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project *Kidney Exchange Programme*, PTDC/EGE-GES/110940/2009, and includes contributions from its research team.

João Pedro PEDROSO

Problem formulation Cycle formulation Current situation

Background: kidney exchange programs

- in many countries, recent legislation allows patients needing a kidney transplant to receive it from a living donor
- what to do when the transplant from that donor is not possible?
 - blood type
 - other incompatibilities
- patient-donor pair may enter a kidney exchange program (KEP)

Problem formulation Cycle formulation Current situation

Kidney exchanges

- idea: allow two (or more) patients in incompatible pairs to exchange their donors
- each recipient receives a compatible kidney from the donor of another pair

Incompatible pairs $P_1 - D_1$ and $P_2 - D_2$ exchange donors

• *P*₁ receives a transplant from *D*₂ and vice versa

Graph representation:

- vertices are patient-donor pairs
- arcs link a patient to compatible donors ,

Problem formulation Cycle formulation Current situation

Kidney exchanges

- idea: allow two (or more) patients in incompatible pairs to exchange their donors
- each recipient receives a compatible kidney from the donor of another pair

Incompatible pairs $P_1 - D_1$ and $P_2 - D_2$ exchange donors

• *P*₁ receives a transplant from *D*₂ and vice versa

Graph representation:

- vertices are patient-donor pairs
- arcs link a patient to compatible donors

Problem formulation Cycle formulation Current situation

Kidney exchanges: example

- instance with five pairs
- what is the maximum number of transplants?
- what if the allowed number of simultaneous transplants is limited?
- how to optimize if there is some probability of vertex/arc failure?

< < >> < </p>

Problem formulation Cycle formulation Current situation

Kidney exchanges: example

- feasible exchange: a set of vertex-disjoint cycles
 (e.g., 1 2 3 1)
- size of an exchange: sum of the lengths of its cycles
- maximum exchange in this example: 4 (cycle 1 - 2 - 5 - 3 - 1)

Problem formulation Cycle formulation Current situation

Kidney exchanges: example

- feasible exchange: a set of vertex-disjoint cycles
 (e.g., 1 2 3 1)
- size of an exchange: sum of the lengths of its cycles
- maximum exchange in this example: 4 (cycle 1 - 2 - 5 - 3 - 1)

Problem formulation Cycle formulation Current situation

Kidney exchanges: example

- feasible exchange: a set of vertex-disjoint cycles
 (e.g., 1 2 3 1)
- size of an exchange: sum of the lengths of its cycles
- maximum exchange in this example: 4 (cycle 1 - 2 - 5 - 3 - 1)

Problem formulation Cycle formulation Current situation

Kidney exchanges: example

- feasible exchange: a set of vertex-disjoint cycles
 (e.g., 1 2 3 1)
- size of an exchange: sum of the lengths of its cycles
- maximum exchange in this example: 4 (cycle 1 - 2 - 5 - 3 - 1)

Problem formulation Cycle formulation Current situation

- In many situations the length of each cycle is limited:
 - limitations in the number of operation rooms
 - number of surgeons available
- If maximum cycle size is K = 3, several solutions are possible.

Problem formulation Cycle formulation Current situation

- In many situations the length of each cycle is limited:
 - limitations in the number of operation rooms
 - number of surgeons available
- If maximum cycle size is K = 3, several solutions are possible.

Problem formulation Cycle formulation Current situation

- In many situations the length of each cycle is limited:
 - limitations in the number of operation rooms
 - number of surgeons available
- If maximum cycle size is K = 3, several solutions are possible.

Problem formulation Cycle formulation Current situation

- In many situations the length of each cycle is limited:
 - limitations in the number of operation rooms
 - number of surgeons available
- If maximum cycle size is K = 3, several solutions are possible.

Kidney exchange programs

Aximizing expectation Conclusions Problem formulation Cycle formulation Current situation

Another example

< □ > < □ > < □ > < □ > < □ >

Kidney exchange programs

laximizing expectation Conclusions Problem formulation Cycle formulation Current situation

Another example

< □ > < □ > < □ > < □ > < □ >

Problem formulation Cycle formulation Current situation

Maximum cycle size and NP-hardness

In many situations the length of each cycle is limited

- If length is not limited → assignment problem (polynomial algorithms are known, e.g., hungarian algorithm).
- If length is limited to 2 → matching problem (polynomial algorithms are known: Edmonds algorithm).
- If length is limited to 3, 4, ... → problem is NP-hard (no polynomial algorithms are known).

Problem formulation Cycle formulation Current situation

Maximum cycle size and NP-hardness

- In many situations the length of each cycle is limited
- If length is not limited → assignment problem (polynomial algorithms are known, e.g., hungarian algorithm).
- If length is limited to 2 → matching problem (polynomial algorithms are known: Edmonds algorithm).
- If length is limited to 3, 4, ... → problem is NP-hard (no polynomial algorithms are known).

Problem formulation Cycle formulation Current situation

Maximum cycle size and NP-hardness

- In many situations the length of each cycle is limited
- If length is not limited → assignment problem (polynomial algorithms are known, e.g., hungarian algorithm).
- If length is limited to 2 → matching problem (polynomial algorithms are known: Edmonds algorithm).
- If length is limited to 3, 4, ... → problem is NP-hard (no polynomial algorithms are known).

Problem formulation Cycle formulation Current situation

Maximum cycle size and NP-hardness

- In many situations the length of each cycle is limited
- If length is not limited → assignment problem (polynomial algorithms are known, e.g., hungarian algorithm).
- If length is limited to 2 → matching problem (polynomial algorithms are known: Edmonds algorithm).
- If length is limited to 3, 4, ... → problem is NP-hard (no polynomial algorithms are known).

Problem formulation Cycle formulation Current situation

NP-hard problems

Problem formulation Cycle formulation Current situation

Mathematical programming formulations

- There are several possibilities for modeling the problem in mathematical programming
- One of the most successful is the cycle formulation:
 - enumerate all cycles in the graph with length at most K
 - for each cycle c, let variable x_c be 1 if c is chosen, 0 otherwise
 - every feasible solution corresponds to a set of vertex-disjoint cycles

Problem formulation Cycle formulation Current situation

Cycle formulation

maximize
$$\sum_{c} w_c x_c$$
(1a)subject to $\sum_{c:i \in c} x_c \leq 1 \quad \forall i$ (1b) $x_c \in \{0,1\} \quad \forall c$

- case of 0 1 weights: $w_c = |c|$, (length of cycle *c*)
- objective: maximize the weight of the exchange
- constraints: every vertex is at most in one cycle (*i.e.*, donate/receive at most one kidney)
- difficulty: number of variables

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Problem formulation Cycle formulation Current situation

Cycle formulation

- Exponential number of variables
- Not all are needed for solving the problem
- Use only those necessary \longrightarrow column generation

Kidney exchange programs Maximizing expectation Problem formulati Cycle formulation Current situation

Column generation

U. PORTO

Problem formulation Cycle formulation Current situation

Previous results

- Cycle formulation seems to be more than able to process foreseen number of patient-donor pairs in the KEP in Portugal
- Besides, it may allow to treat slightly different objectives:
 - produce robust solutions
 - maximize expectation of the number of transplants
- What if the "market" becomes the European Union?

nteresting cases Solution procedure

Maximizing expectation

- Basis: cycle formulation
- On standard approach: cycle evaluation is the number of arcs in the cycle (*i.e.*, the *number of transplants*)
- Our proposal: use the expectation of the number of transplants instead
- Problem: not straightforward to tackle...
 - computation of the expectation is heavy, even for small cycles
 - optimization is just a small part in the solution process...

Interesting cases Solution procedure

Unreliable vertices

João Pedro PEDROSO Maximizing Expectation on Vertex-disjoint Cycle Packing

Interesting cases Solution procedure

Unreliable vertices

Interesting cases Solution procedure

Unreliable vertices

João Pedro PEDROSO Maximizing Expectation on Vertex-disjoint Cycle Packing

Interesting cases Solution procedure

Unreliable vertices

Interesting cases Solution procedure

Unreliable vertices

Interesting cases Solution procedure

Unreliable vertices

João Pedro PEDROSO Maximizing Expectation on Vertex-disjoint Cycle Packing

Interesting cases Solution procedure

Unreliable arcs

イロト イロト イヨト イヨト

Interesting cases Solution procedure

Interesting cases Solution procedure

Interesting cases Solution procedure

Interesting cases Solution procedure

Interesting cases Solution procedure

Solution procedure

- Preprocessing
- Solution optimization
- Implementation

Solution procedure

Solution procedure: preprocessing

Preprocessing

- prepare a database of cycle configurations for the relevant sizes
- precompute formulas for expectations for these configurations HARD
- store this information in a database
- Example:

Use the expectation as objective coefficient for each cycle

Solution procedure: preprocessing

Preprocessing

Precompute formulas for expectations for these configurations HARD

store this information in a database

• Example:

Use the expectation as objective coefficient for each cycle

Maximizing expectation

Solution procedure: preprocessing

Preprocessing

- prepare a database of cycle configurations for the relevant sizes
 - precompute formulas for expectations for these configurations HARD
- store this information in a database
- Example:

expectation formula?

< < >> < </p>

Use the expectation as objective coefficient for each cycle

Maximizing expectation

Solution procedure: preprocessing

Preprocessing

- prepare a database of cycle configurations for the relevant sizes
 - precompute formulas for expectations for these configurations HARD
- store this information in a database
- Example:

expectation formula?

< < >> < </p>

Use the expectation as objective coefficient for each cycle

Interesting cases Solution procedure

Solution procedure: cycle configuration database

• Two-vertex graphs (1 graph)

Interesting cases Solution procedure

Solution procedure: cycle configuration database

• Two-vertex graphs (1 graph)

Interesting cases Solution procedure

Solution procedure: cycle configuration database

• Two-vertex graphs (1 graph)

Interesting cases Solution procedure

Solution procedure: cycle configuration database

• Two-vertex graphs (1 graph)

João Pedro PEDROSO

Match enumerated graph with one in the database

Extract expectation formula from the database

$$\begin{split} & 3 - \rho_{21}\rho_{31} - \rho_{21}\rho_{31}\rho_{23} + \rho_{21}\rho_{32}\rho_{23} + \rho_{21}\rho_{31}\rho_{32}\rho_{23} + \rho_{31}\rho_{32}\rho_{23} - \rho_{32}\rho_{23} - \rho_{21}\rho_{31} - \rho_{21}\rho_{31}\rho_{32} - \rho_{31}\rho_{32} + \rho_{13}\left(\rho_{23}\left(\rho_{31} - 1\right)\left(-\rho_{32} + \rho_{21}\left(\rho_{32} + 1\right) + 1\right) - \left(\rho_{21} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\right) + \rho_{12}\left(-\left(\rho_{23}\left(\rho_{31} - 1\right) + \rho_{31} + 1\right)\rho_{32} + \rho_{21}\left(\rho_{23}\left(\rho_{31} - 1\right)\left(\rho_{32} - 1\right) + \rho_{32} + \rho_{31}\left(\rho_{32} + 1\right) - 1\right) + \rho_{13}\left(\rho_{23}\left(\rho_{31} + 1\right)\rho_{32}\right) + \rho_{32}\left(\rho_{31} - 1\right)\left(\rho_{32} - 1\right) + \rho_{32}\left(\rho_{31} - 1\right)\rho_{32}\left(\rho_{31} - 1\right)\rho_{32}\right) + \rho_{32}\left(\rho_{31} - 1\right)\rho_{32}\left(\rho_{31} - 1\right)\rho_{32}\left(\rho_{31} - 1\right)\rho_{32}\right) + \rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\right) + \rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\right) + \rho_{32}\left(\rho_{31} - 1\right)\rho_{32}\left(\rho_{31} - 1\right)\rho_{32}\left(\rho_{31} - 1\right)\rho_{32}\left(\rho_{31} - 1\right)\rho_{32}\right) + \rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\right) + \rho_{32}\left(\rho_{31} - 1\right)\rho_{32}\left(\rho_{31} - 1\right)\rho_{32}\left(\rho_{31} - 1\right)\rho_{32}\right) + \rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\right) + \rho_{32}\left(\rho_{31} - 1\right)\rho_{32}\left(\rho_{31} - 1\right)\rho_{32}\left(\rho_{31} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\right) + \rho_{32}\left(\rho_{31} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\right) + \rho_{32}\left(\rho_{31} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\right) + \rho_{32}\left(\rho_{31} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\right) + \rho_{32}\left(\rho_{31} - 1\right)\rho_{31}\left(\rho_{32} - 1\right)\rho_{31}\left(\rho_$$

Map probabilities from original graph to the one stored

p_2	\leftrightarrow	p_1		
ρ_5		ρ_2		
D_{2}		00		
P3		P^3		

Compute expectation for the cycle (2 – 5 – 3); it will be its coefficient at the objective

Interesting cases Solution procedure

Match enumerated graph with one in the database

Extract expectation formula from the database

$$\begin{split} & 3 - p_{21}p_{23} - p_{21}p_{31}p_{23} + p_{21}p_{32}p_{23} + p_{21}p_{31}p_{32}p_{23} + p_{31}p_{32}p_{23} - p_{32}p_{23} - p_{21}p_{31} - p_{21}p_{31}p_{32} - p_{31}p_{32} + p_{13}\left(p_{23}\left(p_{31} - 1\right)\left(-p_{32} + p_{21}\left(p_{32} + 1\right) + 1\right) - \left(p_{21} - 1\right)p_{31}\left(p_{32} - 1\right)\right) + p_{12}\left(-\left(p_{23}\left(p_{31} - 1\right) + p_{31} + 1\right)p_{32} + p_{21}\left(p_{23}\left(p_{31} - 1\right)\left(p_{32} - 1\right) + p_{32} + p_{31}\left(p_{32}\left(p_{31} - 1\right) + p_{32}\right) + p_{32}\left(p_{31} - 1\right)p_{32}\left(p_{31} - 1\right)p_{32} + p_{31}\left(p_{32} - 1\right) + p_{32}\left(p_{31} - 1\right)p_{32}\left(p_{31} - 1\right)p_{32} + p_{31}\left(p_{32} - 1\right)p_{31} + p_{32}\left(p_{31} - 1\right)p_{32}\left(p_{31} - 1\right)p_{32} + p_{32}\left(p_{31} - 1\right)p_{31}\right)p_{32} + p_{31}\left(p_{32} - 1\right)p_{31} + p_{32}\left(p_{31} - 1\right)p_{32}\left(p_{31} - 1\right)p_{32} + p_{31}\left(p_{32} - 1\right)p_{31}\right)p_{32} + p_{31}\left(p_{32} - 1\right)p_{31} + p_{32}\left(p_{31} - 1\right)p_{32}\left(p_{31} - 1\right)p_{32}\right)p_{32} + p_{31}\left(p_{32} - 1\right)p_{31}\left(p_{32} - 1\right)p_{31}\right)p_{32} + p_{31}\left(p_{32} - 1\right)p_{31}\right)p_{32} + p_{31}\left(p_{32} - 1\right)p_{31}\left(p_{32} - 1\right)p_{31}\right)p_{32} + p_{31}\left(p_{32} - 1\right)p_{31}\right)p_{32}\left(p_{31} - 1\right)p_{32}\left(p_{31} - 1\right)p_{32}\right)p_{32}\left(p_{31} - 1\right)p_{31}\left(p_{32} - 1\right)p_{31}\right)p_{32}\left(p_{31} - 1\right)p_{31}\left(p_{32} - 1\right)p_{31}\right)p_{31}\left(p_{32} - 1\right)p_{32}\right)p_{31}\left(p_{32} - 1\right)p_{31}\left(p_{32} - 1\right)p_{31}\left(p_{32} - 1\right)p_{31}\left(p_{32} - 1\right)p_{31}\right)p_{31}\left(p_{32} - 1\right)p_{31}\left(p_{32} - 1\right)p_{31}\left(p$$

Map probabilities from original graph to the one stored

p_2	\leftrightarrow	p_1		
p_5	\leftrightarrow	p_2		
p_3	\leftrightarrow	p_3		

Compute expectation for the cycle (2 – 5 – 3); it will be its coefficient at the objective

Solution procedure

Match enumerated graph with one in the database

Extract expectation formula from the database

 $3 - \textit{p}_{21}\textit{p}_{23} - \textit{p}_{21}\textit{p}_{31}\textit{p}_{23} + \textit{p}_{21}\textit{p}_{32}\textit{p}_{23} + \textit{p}_{21}\textit{p}_{31}\textit{p}_{32}\textit{p}_{23} + \textit{p}_{31}\textit{p}_{32}\textit{p}_{23} - \textit{p}_{32}\textit{p}_{23} - \textit{p}_{21}\textit{p}_{31} - \textit{p}_{21}\textit{p}_{31}\textit{p}_{32} - \textit{p}_{32}\textit{p}_{33} - \textit{p}_{33} - \textit{p}_{33}\textit{p}_{33} - \textit{p}_{33} - \textit{p}_{33}$ $p_{31}p_{32} + p_{13}(p_{23}(p_{31} - 1)(-p_{32} + p_{21}(p_{32} + 1) + 1) - (p_{21} - 1)p_{31}(p_{32} - 1)) +$ $p_{12} \left(-\left(p_{23} \left(p_{31} - 1\right) + p_{31} + 1\right) p_{32} + p_{21} \left(p_{23} \left(p_{31} - 1\right) \left(p_{32} - 1\right) + p_{32} + p_{31} \left(p_{32} + 1\right) - 1\right) + p_{13} \left(p_{23} \left(p_{31} + 1\right) \left(p_{32} + 1\right) + p_{32} + p_{33} \left(p_{33} + 1\right) \left(p_{33} + 1\right) + p_{33} \left(p_{33} + 1\right) + p_{$

p_2	\leftrightarrow	p_1		
p_5	\leftrightarrow	p_2		
n-		n-		
P3		P^3		

Match enumerated graph with one in the database

Extract expectation formula from the database

 $3 - \textit{p}_{21}\textit{p}_{23} - \textit{p}_{21}\textit{p}_{31}\textit{p}_{23} + \textit{p}_{21}\textit{p}_{32}\textit{p}_{23} + \textit{p}_{21}\textit{p}_{31}\textit{p}_{32}\textit{p}_{23} + \textit{p}_{31}\textit{p}_{32}\textit{p}_{23} - \textit{p}_{32}\textit{p}_{23} - \textit{p}_{21}\textit{p}_{31} - \textit{p}_{21}\textit{p}_{31}\textit{p}_{32} - \textit{p}_{32}\textit{p}_{33} - \textit{p}_{33} - \textit{p}_{33}\textit{p}_{33} - \textit{p}_{33} - \textit{p}_{33}$ $p_{31}p_{32} + p_{13}(p_{23}(p_{31} - 1)(-p_{32} + p_{21}(p_{32} + 1) + 1) - (p_{21} - 1)p_{31}(p_{32} - 1)) +$ $p_{12} \left(-\left(p_{23} \left(p_{31} - 1\right) + p_{31} + 1\right) p_{32} + p_{21} \left(p_{23} \left(p_{31} - 1\right) \left(p_{32} - 1\right) + p_{32} + p_{31} \left(p_{32} + 1\right) - 1\right) + p_{13} \left(p_{23} \left(p_{31} + 1\right) \left(p_{32} + 1\right) + p_{32} + p_{33} \left(p_{33} + 1\right) \left(p_{33} + 1\right) + p_{33} \left(p_{33} + 1\right) + p_{$

Map probabilities from original graph to the one stored

p_2	\leftrightarrow	p_1	P ₂₅	\leftrightarrow	P12
, - 		~	P52	\leftrightarrow	P21
ρ_5	\leftrightarrow	ρ_2	P53	\leftrightarrow	P23
n.		n-	P32	\leftrightarrow	P31
p_3		p_3	P23	\leftrightarrow	P13

Match enumerated graph with one in the database

Extract expectation formula from the database

 $3 - \textit{p}_{21}\textit{p}_{23} - \textit{p}_{21}\textit{p}_{31}\textit{p}_{23} + \textit{p}_{21}\textit{p}_{32}\textit{p}_{23} + \textit{p}_{21}\textit{p}_{31}\textit{p}_{32}\textit{p}_{23} + \textit{p}_{31}\textit{p}_{32}\textit{p}_{23} - \textit{p}_{32}\textit{p}_{23} - \textit{p}_{21}\textit{p}_{31} - \textit{p}_{21}\textit{p}_{31}\textit{p}_{32} - \textit{p}_{32}\textit{p}_{33} - \textit{p}_{33} - \textit{p}_{33}\textit{p}_{33} - \textit{p}_{33} - \textit{p}_{33}$ $p_{31}p_{32} + p_{13}(p_{23}(p_{31} - 1)(-p_{32} + p_{21}(p_{32} + 1) + 1) - (p_{21} - 1)p_{31}(p_{32} - 1)) +$ $p_{12} \left(-\left(p_{23} \left(p_{31} - 1\right) + p_{31} + 1\right) p_{32} + p_{21} \left(p_{23} \left(p_{31} - 1\right) \left(p_{32} - 1\right) + p_{32} + p_{31} \left(p_{32} + 1\right) - 1\right) + p_{13} \left(p_{23} \left(p_{31} + 1\right) \left(p_{32} + 1\right) + p_{32} + p_{33} \left(p_{33} + 1\right) \left(p_{33} + 1\right) + p_{33} \left(p_{33} + 1\right) + p_{$

Map probabilities from original graph to the one stored

p_2	\leftrightarrow	p_1	P25	\leftrightarrow	P12
, - n		, .	P52	\leftrightarrow	P21
ρ_5	\leftrightarrow	ρ_2	P53	\leftrightarrow	P23
n	\sim	n	P32	\leftrightarrow	P31
P_3		P_3	P23	\leftrightarrow	P13

Occupie to Compute expectation for the cycle (2 - 5 - 3); it will be its coefficient at the objective

Interesting cases Solution procedure

Solution procedure: solution optimization

Solution optimization

- read instance: compatibility between pairs, failure probability for vertices/arcs
- Prepare compatibility graph
- enumerate cycles of relevant size
- setup optimization model
 - one variable for each cycle
 - 2 constraints: each vertex in at most one cycle
 - objective coefficient: expectation of number of transplants HARD
- solve optimization model easy?!!

Interesting cases Solution procedure

Solution procedure: implementation

Implementation

- contact selected pairs
- verify solution (check back outs)
- make last-minute compatibility check
- make transplants

Interesting cases Solution procedure

Results: cross-formulation performance

Conclusions

- There are many applications of information technologies in health care
- Applications involve many disciplines in computer science and informatics
- KEP: case where welfare of patients can be maximized
 - number of transplants
 - robustness of the solution
 - quality of the solution (maximize patient-donor compatibility)
- Careful implementation of operations research program leads to significant social benefits

・ ロ ト ・ 同 ト ・ 回 ト ・ 回 ト