The recursive circle packing problem

João Pedro Pedroso^{1,2}

INESC Porto and Universidade do Porto, Portugal

jpp@fc.up.pt

LIX, Ecole Polytechnique, Palaiseau — 2014-04-29/301

¹This work is partially funded by FEDER, QREN e Compete, within project *OCC: Optimizador de Carga em Contentores*, QREN SII&DT Projeto em Co-Promoção 13824.

Algorithms

Origin of the problem: industrial setting

- A company produces tubes
- Orders are sent to customers in containers
- The company wants to know how to load the containers
 - previously: solution constructed by hand
 - very tedious and error prone
 - using an expensive resource: production engineer's time
 - the cost of sending one container to distant customers is very high

Algorithms

Origin of the problem: industrial setting

Pedroso

The recursive circle packing problem

The problem Model

Origin of the problem: industrial setting

The recursive circle packing problem

Problem statement: real world

Given a set of tubes characterized by internal and external diameters, all of them cut to the length of a container:

- determine the number of containers required to send them
- decide in which, from the set of containers to insert each tube
- determine each tube's position

minimizing:

- the number of containers required (first goal)
- the center of gravity of each container (second goal) maximizing:

• the number/value of additional tubes that can be inserted being allowed to:

• insert tubes inside other tubes (telescoping) respecting:

• maximum container weight.

Problem statement: abstraction

Simplified version:

- given a set of *annuli* (*i.e.*, concentric circles, or rings), each characterized by
 - external and internal radii
 - value
- given a rectangle;
- determine the maximum value that can be inserted, such that:
 - each ring may be inside other rings, but they cannot overlap
 - all rings must be completely inside the rectangle
- (solution: each ring's position)

Algorithms

Background: some algorithms

- Circle packing
 - in rectangles
 - in circles
 - (no previous work of our knowledge in telescoping)

A B b A B b

Algorithms

Algorithms – practical solution

Solution construction in two interconnected phases:

- Telescoping: inserting thinner tubes inside thicker
- Packing in rectangle, using (possibly) previously telescoped tubes

< ロ > < 同 > < 回 > < 回 >

The problem Model

Algorithms

Practical solution: telescoping

The problem

Algorithms

Telescoping

イロト イヨト イヨト イヨト

The problem Model

Algorithms

Practical solution: packing in rectangle

Approximation algorithm

Practical solutions are obtained with a (semi-greedy) variant of: For each ring, sorted from largest to thinnest

- Determine positions in the rectangle where it can be inserted (if some)
- Choose the lowest, leftmost position
- For each ring that can be inserted in this ring:
 - Determine positions where it can be inserted (if some)
 - Choose the lowest, leftmost position
 - For each ring that can be inserted in this ring:
 - Determine positions where it can be inserted (if some)
 - Choose the lowest, leftmost position
 - ...

A mathematical model: parameters, variables

Parameters for describing an instance:

- width W and height H of the rectangular container;
- set of tube indicess A
- for each tube $i \in A$:
 - external radius r^{ext}_i
 - internal radius r^{int}_i

Variables:

- position of the center of each ring *i*, (*x_i*, *y_i*);
- $w_i = 1$ if ring *i* is placed directly in the rectangle, zero otherwise;
- $u_{ki} = 1$ if ring *i* is placed directly inside ring *k*, zero otherwise;

The problem

A mathematical model: placement inside rectangle

Tube placement:

$$w_i + \sum_k u_{ki} \le 1, \quad \forall i,$$

 $\sum_{i:i \ne k} u_{ki} \le w_k + \sum_i u_{ik}, \quad \forall k.$

Placement inside rectangle with vertices (0,0), (W,0), (0,H), (W,H).

$$\begin{aligned} x_i - r_i^{\text{ext}} &\geq 0, \\ y_i - r_i^{\text{ext}} &\geq 0, \\ x_i + r_i^{\text{ext}} &\leq W, \\ y_i + r_i^{\text{ext}} &\leq H, \quad \forall i. \end{aligned}$$

,

A mathematical model: placement among circles

Distance between circles in rectangle must be larger than the sum of their radii:

$$\sqrt{(x_i - x_j)^2 + (y_i - y_j)^2} \ge (r_i^{\text{ext}} + r_j^{\text{ext}})(w_i + w_j - 1), \quad \forall i, j$$

$$\Leftrightarrow (x_i - x_j)^2 + (y_i - y_j)^2 \ge (r_i^{\text{ext}} + r_j^{\text{ext}})^2(w_i + w_j - 1), \quad \forall i, j$$

The same for each pair of tubes i, j directly placed inside the same tube k:

$$(x_i - x_j)^2 + (y_i - y_j)^2 \ge (r_i^{ext} + r_j^{ext})^2 (2 - u_{ki} - u_{kj}),$$

If tube *i* is placed directly in tube *k*, their circles cannot overlap:

$$(x_k - x_i)^2 + (y_k - y_i)^2 \le (r_k^{int} - r_i^{ext})^2 + M(1 - u_{ki}).$$

(*M* makes constraints redundant if one of u_{ki} is zero)

A mathematical model: objective

maximize
$$V = \sum_{i} v_i \left(w_i + \sum_{k} u_{ki} \right)$$

A B F A B F

크

Bounds

- The previous model is exact, but is it nonlinear and very difficult to solve
- Challenges: linear model for obtaining
 - lower bounds (feasible solutions)
 - upper bounds (how much they can be improved)
- some ideas:
 - linear version with L1-norm distance: lower bound?
 - Inear version with L_∞-norm distance: upper bound?
 - L2-norm with piecewise linear approximation?
 - what are the limits for a MINLP solver (e.g., couenne)?

Distance with different norms

→ Ξ →

Pedroso

Distance with different norms

L₁norm

 L_{∞} norm

The recursive circle packing problem

A mathematical model: linear version (lower bound)

$$\begin{aligned} ||x - y||_{\infty} &= \max(|x_i - x_j|, |y_i - y_j|) \ge r_i^{\text{ext}} + r_j^{\text{ext}} - M(2 - w_i - w_j) \\ ||x - y||_{\infty} &= \max(|x_i - x_j|, |y_i - y_j|) \ge r_i^{\text{ext}} + r_j^{\text{ext}} - M(2 - u_{ki} - u_{kj}) \\ ||x - y||_1 &= |x_i - x_j| + |y_i - y_j| \le r_k^{\text{int}} - r_i^{\text{ext}} + M(1 - u_{ki}) \end{aligned}$$

∃ → < ∃</p>

A mathematical model: linear version (upper bound)

$$\begin{aligned} ||x - y||_{1} &= |x_{i} - x_{j}| + |y_{i} - y_{j}| \ge r_{i}^{\text{ext}} + r_{j}^{\text{ext}} - M(2 - w_{i} - w_{j}) \\ ||x - y||_{1} &= |x_{i} - x_{j}| + |y_{i} - y_{j}| \ge r_{i}^{\text{ext}} + r_{j}^{\text{ext}} - M(2 - u_{ki} - u_{kj}) \\ ||x - y||_{\infty} &= \max(|x_{i} - x_{j}|, |y_{i} - y_{j}|) \le r_{k}^{\text{int}} - r_{i}^{\text{ext}} + M(1 - u_{ki}) \end{aligned}$$

글 > < 글

Conclusions

- Main contributions:
 - definition of the recursive circle packing problem;
 - new method and model for cycle packing, including telescoping;
 - approximate methods: obtain bounds on the objective value;
 - upper bounds are important: firms want to assess how much could be improved.
- Further work:
 - exact methods for solving this problem.

Some solutions

Some solutions

grasp C=1 V=3990.0 (c1, v1=3990.0)

イロト イヨト イヨト イヨト

크