The recursive circle packing problem

João Pedro Pedroso ${ }^{1,2}$

INESC Porto and Universidade do Porto, Portugal
jpp@fc.up.pt

LIX, Ecole Polytechnique, Palaiseau - 2014-04-29/30¹

[^0]
Origin of the problem: industrial setting

- A company produces tubes
- Orders are sent to customers in containers
- The company wants to know how to load the containers
- previously: solution constructed by hand
- very tedious and error prone
- using an expensive resource: production engineer's time
- the cost of sending one container to distant customers is very high

Origin of the problem: industrial setting

Origin of the problem: industrial setting

Problem statement: real world

Given a set of tubes characterized by internal and external diameters, all of them cut to the length of a container:

- determine the number of containers required to send them
- decide in which, from the set of containers to insert each tube
- determine each tube's position minimizing:
- the number of containers required (first goal)
- the center of gravity of each container (second goal) maximizing:
- the number/value of additional tubes that can be inserted being allowed to:
- insert tubes inside other tubes (telescoping) respecting:
- maximum container weight.

Problem statement: abstraction

Simplified version:

- given a set of annuli (i.e., concentric circles, or rings), each characterized by
- external and internal radii
- value
- given a rectangle;
- determine the maximum value that can be inserted, such that:
- each ring may be inside other rings, but they cannot overlap
- all rings must be completely inside the rectangle
- (solution: each ring's position)

Background: some algorithms

- Circle packing
- in rectangles
- in circles
- (no previous work of our knowledge in telescoping)

Algorithms - practical solution

Solution construction in two interconnected phases:

- Telescoping: inserting thinner tubes inside thicker
- Packing in rectangle, using (possibly) previously telescoped tubes

Practical solution: telescoping

Telescoping

Practical solution: packing in rectangle

Approximation algorithm

Practical solutions are obtained with a (semi-greedy) variant of:
For each ring, sorted from largest to thinnest

- Determine positions in the rectangle where it can be inserted (if some)
- Choose the lowest, leftmost position
- For each ring that can be inserted in this ring:
- Determine positions where it can be inserted (if some)
- Choose the lowest, leftmost position
- For each ring that can be inserted in this ring:
- Determine positions where it can be inserted (if some)
- Choose the lowest, leftmost position
- ...

A mathematical model: parameters, variables

Parameters for describing an instance:

- width W and height H of the rectangular container;
- set of tube indicess \mathcal{A}
- for each tube $i \in \mathcal{A}$:
- external radius $r_{i}^{\text {ext }}$
- internal radius $r_{i}^{\text {int }}$

Variables:

- position of the center of each ring $i,\left(x_{i}, y_{i}\right)$;
- $w_{i}=1$ if ring i is placed directly in the rectangle, zero otherwise;
- $u_{k i}=1$ if ring i is placed directly inside ring k, zero otherwise;

A mathematical model: placement inside rectangle

Tube placement:

$$
\begin{array}{ll}
w_{i}+\sum_{k} u_{k i} \leq 1, & \forall i, \\
\sum_{i: i \neq k} u_{k i} \leq w_{k}+\sum_{i} u_{i k}, & \forall k .
\end{array}
$$

Placement inside rectangle with vertices $(0,0),(W, 0),(0, H),(W, H)$.

$$
\begin{aligned}
& x_{i}-r_{i}^{\mathrm{ext}} \geq 0 \\
& y_{i}-r_{i}^{\mathrm{ext}} \geq 0 \\
& x_{i}+r_{i}^{\mathrm{ext}} \leq W \\
& y_{i}+r_{i}^{\mathrm{ext}} \leq H, \quad \forall i,
\end{aligned}
$$

A mathematical model: placement among circles

Distance between circles in rectangle must be larger than the sum of their radii:

$$
\begin{aligned}
& \sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}} \geq\left(r_{i}^{\mathrm{ext}}+r_{j}^{\mathrm{ext}}\right)\left(w_{i}+w_{j}-1\right), \\
\Leftrightarrow\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2} \geq\left(r_{i}^{\mathrm{ext}}+r_{j}^{\mathrm{ext}}\right)^{2}\left(w_{i}+w_{j}-1\right), & \forall i, j
\end{aligned}
$$

The same for each pair of tubes i, j directly placed inside the same tube k :

$$
\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2} \geq\left(r_{i}^{\text {ext }}+r_{j}^{\mathrm{ext}}\right)^{2}\left(2-u_{k i}-u_{k j}\right),
$$

If tube i is placed directly in tube k, their circles cannot overlap:

$$
\left(x_{k}-x_{i}\right)^{2}+\left(y_{k}-y_{i}\right)^{2} \leq\left(r_{k}^{\mathrm{int}}-r_{i}^{\mathrm{ext}}\right)^{2}+M\left(1-u_{k i}\right) .
$$

(M makes constraints redundant if one of $u_{k i}$ is zero)

A mathematical model: objective

$$
\operatorname{maximize} V=\sum_{i} v_{i}\left(w_{i}+\sum_{k} u_{k i}\right)
$$

Bounds

- The previous model is exact, but is it nonlinear and very difficult to solve
- Challenges: linear model for obtaining
- lower bounds (feasible solutions)
- upper bounds (how much they can be improved)
- some ideas:
- linear version with L_{1}-norm distance: lower bound?
- linear version with L_{∞}-norm distance: upper bound?
- L_{2}-norm with piecewise linear approximation?
- what are the limits for a MINLP solver (e.g., couenne)?

Distance with different norms

Distance with different norms

L_{1} norm

L_{∞} norm

A mathematical model: linear version (lower bound)

$$
\begin{aligned}
& \|x-y\|_{\infty}=\max \left(\left|x_{i}-x_{j}\right|,\left|y_{i}-y_{j}\right|\right) \geq r_{i}^{\text {ext }}+r_{j}^{\text {ext }}-M\left(2-w_{i}-w_{j}\right) \\
& \|x-y\|_{\infty}=\max \left(\left|x_{i}-x_{j}\right|,\left|y_{i}-y_{j}\right|\right) \geq r_{i}^{\text {ext }}+r_{j}^{\text {ext }}-M\left(2-u_{k i}-u_{k j}\right) \\
& \|x-y\|_{1}=\left|x_{i}-x_{j}\right|+\left|y_{i}-y_{j}\right| \leq r_{k}^{\text {int }}-r_{i}^{\text {ext }}+M\left(1-u_{k i}\right)
\end{aligned}
$$

A mathematical model: linear version (upper bound)

$$
\begin{aligned}
& \|x-y\|_{1}=\left|x_{i}-x_{j}\right|+\left|y_{i}-y_{j}\right| \geq r_{i}^{\mathrm{ext}}+r_{j}^{\mathrm{ext}}-M\left(2-w_{i}-w_{j}\right) \\
& \|x-y\|_{1}=\left|x_{i}-x_{j}\right|+\left|y_{i}-y_{j}\right| \geq r_{i}^{\mathrm{ext}}+r_{j}^{\mathrm{ext}}-M\left(2-u_{k i}-u_{k j}\right) \\
& \|x-y\|_{\infty}=\max \left(\left|x_{i}-x_{j}\right|,\left|y_{i}-y_{j}\right|\right) \leq r_{k}^{\text {int }}-r_{i}^{\mathrm{ext}}+M\left(1-u_{k i}\right)
\end{aligned}
$$

Conclusions

- Main contributions:
- definition of the recursive circle packing problem;
- new method and model for cycle packing, including telescoping;
- approximate methods: obtain bounds on the objective value;
- upper bounds are important: firms want to assess how much could be improved.
- Further work:
- exact methods for solving this problem.

Some solutions

Some solutions

grasp $\mathrm{C}=1 \mathrm{~V}=454.0(\mathrm{c} 1, \mathrm{v} 1=454.0)$

[^0]: ${ }^{1}$ This work is partially funded by FEDER, QREN e Compete, within project OCC: Optimizador de Carga em Contentores, QREN SII\&DT Projeto em Co-Promoção 13824.

