Information systems for health care: a case study

João Pedro PEDROSO

INESC Porto and Universidade do Porto, Portugal 1

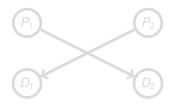
University of Aizu IPSJ Special Interest Group on System Evaluation March 2012

¹This work is financed by the ERDF - European Regional Development Fund through the COMPETE Programme (operatio Fight programme for competitiveness) and by National Funds through the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) within project *Kidney Exchange Programme*, PTDC/EGE-GES/110940/2009, and includes contributions from its research team.

Information systems for health care

- Expected to be one of the areas where more effort will be applied in the next few years
- Has issues involving the all the disciplines of computer science and informatics
- Information systems have a huge impact in terms of
 - economy
 - social benefits
 - work rationalization
 - reliability

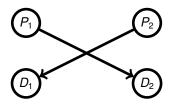
KEP: kidney exchange program


- in many countries, recent legislation allows patients needing a kidney transplant to receive it from a living donor
- what to do when the transplant from that donor is not possible?
 - blood type
 - other incompatibilities
- patient-donor pair may enter a kidney exchange program (KEP)

Kidney exchanges

- idea: allow two (or more) patients in incompatible pairs to exchange their donors
- each recipient receives a compatible kidney from the donor of another pair

Incompatible pairs $P_1 - D_1$ and $P_2 - D_2$ exchange donors

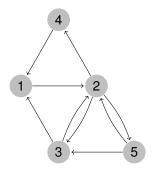

 P₁ receives a transplant from D₂ and vice versa

Graph representation:

- vertices are patient-donor pairs
- arcs link a patient to compatible donors

Kidney exchanges

- idea: allow two (or more) patients in incompatible pairs to exchange their donors
- each recipient receives a compatible kidney from the donor of another pair


Incompatible pairs $P_1 - D_1$ and $P_2 - D_2$ exchange donors

 P₁ receives a transplant from D₂ and vice versa

Graph representation:

- vertices are patient-donor pairs
- arcs link a patient to compatible donors

- instance with five pairs
- the maximum number of transplants is four:
 cycle 1 - 2 - 5 - 3 - 1
- what if the allowed number of simultaneous transplants is three?
- what if it is two?

The information cycle in health care systems

Information cycle: generation

- Who enters the program?
 - an individual?
 - a doctor?
 - a hospital?
- How to assure reliability of the data?
 - who is responsible?
 - who checks its accuracy?
- Who stores the information?
- Dynamic system: environment continuously changing

Information cycle: transmission

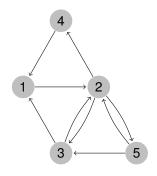
- How can the information be shared? with whom?
- How to ensure privacy? what is privacy in this context?
- Can information be misused?
- How to ensure its quality?
- How/when should shared information be updated?

Information cycle: processing and management

- ullet How to **optimize** the system for the current data \longrightarrow efficiency
- Is the solution found in a reasonable time? → effectiveness
- Will the solution stand with changes in data? robustness

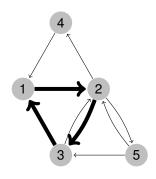
Information cycle: usage

- How to implement the solution found?
- Update information:
 - remove outdated information
 - insert new information
- Speed of implementation is crucial:
 - will the agents be still available?
 - will their condition be one considered?

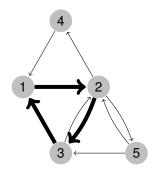


Information processing

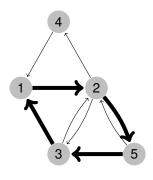
• How to optimize the system for the current data?



- feasible exchange: a set of vertex-disjoint cycles (e.g., 1 - 2 - 3 - 1)
- size of an exchange: sum of the lengths of its cycles
- maximum exchange in this example: 4 (cycle 1 - 2 - 5 - 3 - 1)



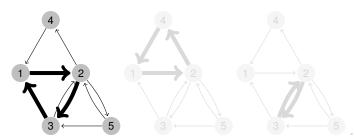
- feasible exchange: a set of vertex-disjoint cycles (e.g., 1 - 2 - 3 - 1)
- size of an exchange: sum of the lengths of its cycles
- maximum exchange in this example: 4 (cycle 1 - 2 - 5 - 3 - 1)

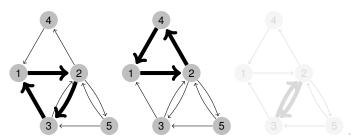


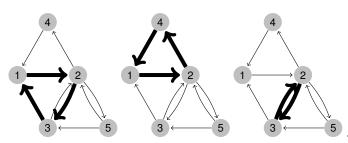
- feasible exchange: a set of vertex-disjoint cycles (e.g., 1 - 2 - 3 - 1)
- size of an exchange: sum of the lengths of its cycles
- maximum exchange in this example: 4 (cycle 1 - 2 - 5 - 3 - 1)

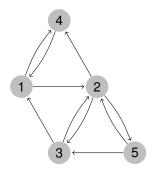


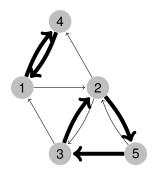
- feasible exchange: a set of vertex-disjoint cycles (e.g., 1 - 2 - 3 - 1)
- size of an exchange: sum of the lengths of its cycles
- maximum exchange in this example: 4 (cycle 1 - 2 - 5 - 3 - 1)


- In many situations the length of each cycle is limited:
 - limitations in the number of operation rooms
 - number of surgeons available
- If maximum cycle size is k = 3, several solutions are possible.


- In many situations the length of each cycle is limited:
 - limitations in the number of operation rooms
 - number of surgeons available
- If maximum cycle size is k = 3, several solutions are possible.


- In many situations the length of each cycle is limited:
 - limitations in the number of operation rooms
 - number of surgeons available
- If maximum cycle size is k = 3, several solutions are possible.


- In many situations the length of each cycle is limited:
 - limitations in the number of operation rooms
 - number of surgeons available
- If maximum cycle size is k = 3, several solutions are possible.


Another example

Another example

- In many situations the length of each cycle is limited
- If length is not limited → assignment problem (polynomial algorithms are known, e.g., hungarian algorithm).
- If length is limited to 2

 matching problem
 (polynomial algorithms are known: Edmonds algorithm).
- If length is limited to 3, 4, ...

 problem is NP-hard
 (no polynomial algorithms are known).

- In many situations the length of each cycle is limited
- If length is not limited → assignment problem (polynomial algorithms are known, e.g., hungarian algorithm).
- If length is limited to 2

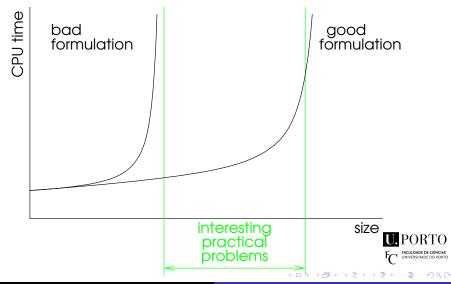
 matching problem
 (polynomial algorithms are known: Edmonds algorithm).
- If length is limited to 3, 4, ...

 problem is NP-hard
 (no polynomial algorithms are known).

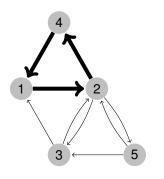
- In many situations the length of each cycle is limited
- If length is not limited → assignment problem (polynomial algorithms are known, e.g., hungarian algorithm).
- If length is limited to 2

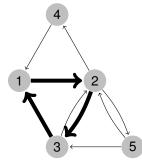
 matching problem
 (polynomial algorithms are known: Edmonds algorithm).
- If length is limited to 3, 4, ...

 problem is NP-hard
 (no polynomial algorithms are known).


- In many situations the length of each cycle is limited
- If length is not limited → assignment problem (polynomial algorithms are known, e.g., hungarian algorithm).
- If length is limited to 2

 matching problem
 (polynomial algorithms are known: Edmonds algorithm).
- If length is limited to 3, 4, ... → problem is NP-hard (no polynomial algorithms are known).




NP-hard problems

Mathematical programming formulations

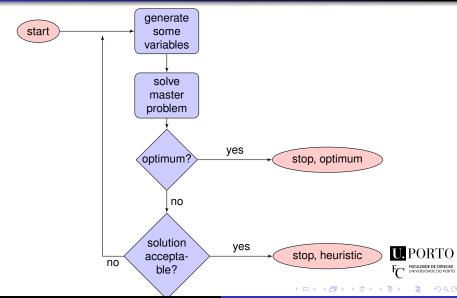
- There are several possibilities for modeling the problem in mathematical programming
- One of the most successful is the cycle formulation:
 - enumerate all cycles in the graph with length at most k
 - for each cycle c, let variable x_c be 1 if c is chosen, 0 otherwise
 - every feasible solution corresponds to a set of vertex-disjoint cycles

Cycle formulation

maximize
$$\sum_{c} w_{c} x_{c}$$
 (1a)

subject to
$$\sum_{c:i \in c} x_c \le 1 \quad \forall i$$
 (1b) $x_c \in \{0,1\} \quad \forall c$

- case of 0-1 weights: $w_c = |c|$, (length of cycle c)
- objective: maximize the weight of the exchange
- constraints: every vertex is at most in one cycle (i.e., donate/receive at most one kidney)
- difficulty: number of variables

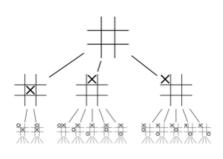

Cycle formulation

- Exponential number of variables
- Not all are needed for solving the problem
- Use only those necessary → column generation

Column generation

Current results

- Cycle formulation seems to be more than able to process foreseen number of patient-donor pairs in the KEP in Portugal
- Besides, it may allow to treat slightly different objectives:
 - produce robust solutions
 - maximize expectation of the number of transplants
- What if the "market" becomes the European Union?



- "For someone to win, somebody else has to loose"???
- No, this is **NOT** a zero-sum game!
- Value of the game: number of transplants done.
- This being said, care has to be taken: many ethical issues

- "For someone to win, somebody else has to loose"???
- No, this is **NOT** a zero-sum game!
- Value of the game: number of transplants done.
- This being said, care has to be taken: many ethical issues

- "For someone to win, somebody else has to loose"???
- No, this is NOT a zero-sum game!
- Value of the game: number of transplants done.
- This being said, care has to be taken: many ethical issues

- "For someone to win, somebody else has to loose"???
- No, this is **NOT** a zero-sum game!
- Value of the game: number of transplants done.
- This being said, care has to be taken: many ethical issues

- "For someone to win, somebody else has to loose"???
- No, this is **NOT** a zero-sum game!
- Value of the game: number of transplants done.
- This being said, care has to be taken: many ethical issues

- "For someone to win, somebody else has to loose"???
- No, this is **NOT** a zero-sum game!
- Value of the game: number of transplants done.
- This being said, care has to be taken: many ethical issues

- "For someone to win, somebody else has to loose"???
- No, this is **NOT** a zero-sum game!
- Value of the game: number of transplants done.
- This being said, care has to be taken: many ethical issues

- "For someone to win, somebody else has to loose"???
- No, this is **NOT** a zero-sum game!
- Value of the game: number of transplants done.
- This being said, care has to be taken: many ethical issues

- "For someone to win, somebody else has to loose"???
- No, this is **NOT** a zero-sum game!
- Value of the game: number of transplants done.
- This being said, care has to be taken: many ethical issues

Final remarks

- Government/Regulation: from the ethical point of view, it is not acceptable that a KEP is left unimplemented
- But for implementing it, a number of questions have to be addressed:
 - Fairness: are agents being treated in an equitable way?
 - many operations for one hospital
 - no operations for another
 - What to do if in the optimum there is a clear looser?

 - How to deal with multiple possible donors?
 - All the issues raised in information life cycle
- I intentionally left questions of other ethical domains (e.g., would it be acceptable to pay to someone for a kidney?)

Final remarks

- Government/Regulation: from the ethical point of view, it is not acceptable that a KEP is left unimplemented
- But for implementing it, a number of questions have to be addressed:
 - Fairness: are agents being treated in an equitable way?
 - many operations for one hospital
 - no operations for another
 - What to do if in the optimum there is a clear looser?

 - How to deal with multiple possible donors?
 - All the issues raised in information life cycle
- I intentionally left questions of other ethical domains (e.g., would it be acceptable to pay to someone for a kidney?)

Final remarks

- Government/Regulation: from the ethical point of view, it is not acceptable that a KEP is left unimplemented
- But for implementing it, a number of questions have to be addressed:
 - Fairness: are agents being treated in an equitable way?
 - many operations for one hospital
 - no operations for another
 - What to do if in the optimum there is a clear looser?
 - Incentives → market design.
 - How to deal with multiple possible donors?
 - All the issues raised in information life cycle
- I intentionally left questions of other ethical domains (e.g., would it be acceptable to pay to someone for a kidney?)

Conclusions

- There are many applications of information technologies in health care
- Applications involve many disciplines in computer science and informatics
- KEP: case where welfare of patients can be maximized
 - number of transplants
 - robustness of the solution
 - quality of the solution (maximize patient-donor compatibility)
- Careful implementation of operations research program leads to significant social benefits

