Steel stacking

A problem in inventory management in the steel industry

João Pedro Pedroso

International Symposium on Mathematics of Logistics TUMSAT, Japan, November 2011

Part of the presentation concerns joint work with **Rui Rei** and **Mikio Kubo**.

Contents

Problem description

2 Solution methods

- MIP solution
- Branch-and-bound
- Simulation-based optimization

O Problem variants

- More general structures
- Limited movements
- Dynamics
- Other objectives

Conclusions

Contents

Problem description

2 Solution methods

- MIP solution
- Branch-and-bound
- Simulation-based optimization

3 Problem variants

- More general structures
- Limited movements
- Dynamics
- Other objectives

Conclusions

Informal problem description

Context

A steel producer has a warehouse where the final product is stocked

- large steel bars enter the warehouse when production finishes
- bars leave the warehouse on trucks or ships for transporting them to the final customer
- there is a crane in the warehouse, which moves the bars one at a time
- the warehouse has *p* different places
- each place can be empty, or keep a stack of steel bars

Informal problem description

Assumptions

- capacity of the stacks is infinite
- no delays on crane movements
- crane can move only one item at a time
- only the item on the top of the stack can be moved
- item on top of each stack may have to be relocated (*reshuffling*)

Objective

• minimize the number of movements made by the crane

Steel stacking

João Pedro Pedroso Steel stacking

Steel stacking

Data

 $\left\{ \begin{array}{ll} p \in \mathbb{N} & \text{number of stacks on the warehouse} \\ n \in \mathbb{N} & \text{number of items} \\ R_i \in \mathbb{N}, i = 1, \dots, n & \text{release dates} \\ D_i \in \mathbb{N}, i = 1, \dots, n & \text{delivery dates} \end{array} \right.$

Steel stacking

Constraints

- crane can move only the item on top of the stack
- release and delivery dates must be satisfied
- the valid movements depend on *R*, *D*, and on the choices made up to the moment.

Solution representation

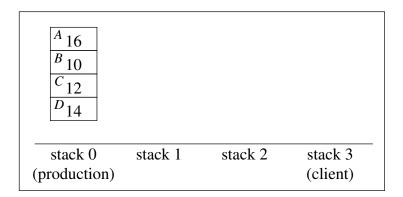
List of movements from a stack (*o*) to another (*d*) $M = [(o_1, d_1), \dots, (o_k, d_k)]$

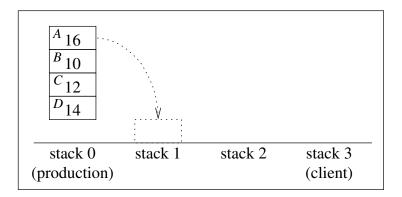
- $0 \le o_i \le p$ and $1 \le d_i \le p+1$
- stack 0 represents the production facility
- stack p + 1 represents the customer track/ship.
- we want to minimize the number of movements (size of M)

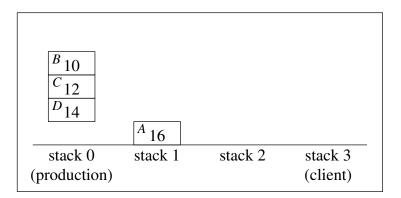
Problem description

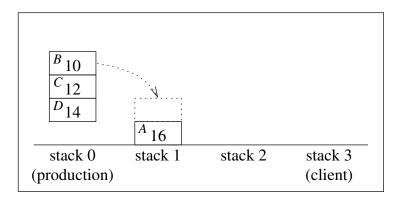
Solution methods Problem variants Conclusions

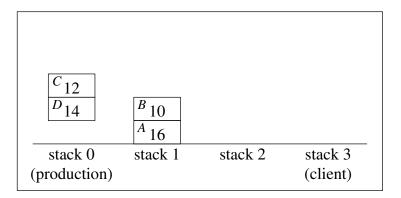
Example

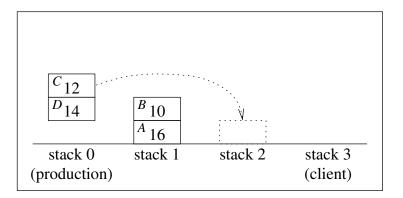


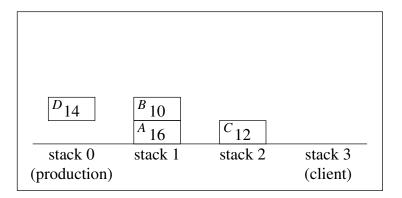


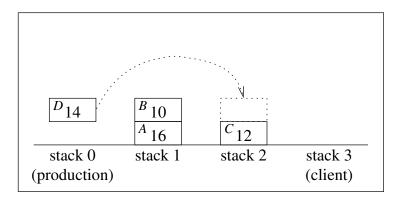


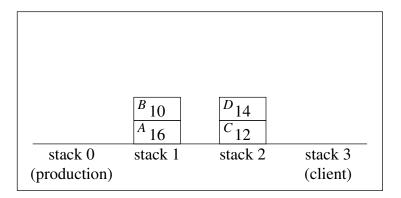


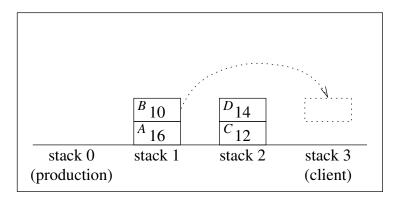




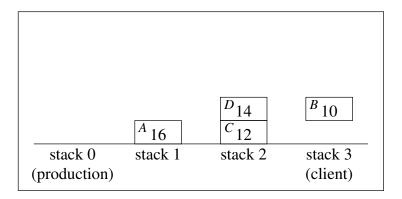


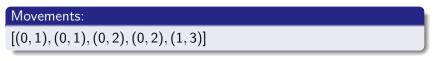






Example – step 5

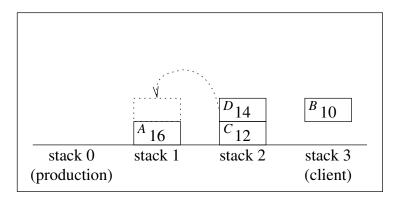




João Pedro Pedroso

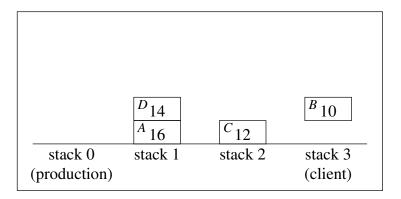
Steel stacking

Example – step 6

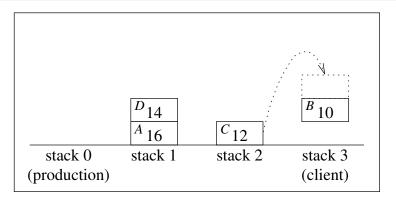


João Pedro Pedroso

Steel stacking



Example – step 7



Movements:

 $[(0,1), (0,1), (0,2), (0,2), (1,3), (2,1), \rightarrow (2,3), (1,3), (1,3)]$ This information is complemented with release and due dates.

Solution representation: MIP

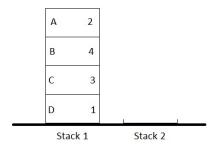
If we want to solve the problem with standard optimization tools: **MIP formulation**:

Sets

- $\mathcal{T} \in \mathbb{N}$ time horizon (the number of periods in the model)
- $\mathit{N} \in \mathbb{N}$ number of items
- $W \in \mathbb{N}$ the number of stacks in the warehouse (warehouse width).
- $H \in \mathbb{N}$ the maximum number of items that can be in a stack at any given instant (warehouse height).
- $R \in \mathbb{R}^N$ item release dates (R_i denotes the release date of item *i*).
- $D \in \mathbb{R}^N$ item due dates (D_i denotes the due date of item i).

Solution representation: MIP

Problem: number of periods that have to be considered



Worst case:
$$T = 2N + \sum_{n=1}^{N-1} n$$

Solution representation: MIP

MIP formulation

Variables

- $x_{ijnt} 1$ if item *n* is released into position (i, j) at period *t*
- $y_{ijklnt} 1$ if item *n* is relocated from position (i, j) into (k, l)at period *t*
 - $z_{ijnt} 1$ if item *n* is delivered from position (i, j) at period *t*
 - $a_{nt} 1$ if item *n* has not entered the warehouse yet at period *t*
 - $b_{ijnt} 1$ if item *n* is in row *j* of stack *i* at period *t*
 - $c_{nt} 1$ if item n has already left the warehouse at period t

Solution representation: branch-and-bound

Branch-and-bound

- When an item is released/relocated:
 - Check all stacks where it can be placed
 - Create a branch for each of them

• When an item is delivered from top: move without branching.

MIP solution Branch-and-bound Simulation-based optimization

Contents

Problem description

2 Solution methods

- MIP solution
- Branch-and-bound
- Simulation-based optimization

3 Problem variants

- More general structures
- Limited movements
- Dynamics
- Other objectives

Conclusions

MIP solution Branch-and-bound Simulation-based optimization

- formulate the problem, create model
- read an instance
- send it to a solver

MIP solution Branch-and-bound Simulation-based optimization

Branch-and-bound method

(1)	create empty queue Q
(2)	push root node into Q
(3)	while Q is not empty
(4)	$\mu \leftarrow pop$ a node from $oldsymbol{Q}$
(5)	$i \leftarrow item$ to be placed next on node μ
(6)	foreach stack s where i can be placed
(7)	$\mu' \leftarrow$ a copy of node μ
(8)	place item i in stack s on node μ'
(9)	execute deliveries from top of stacks in μ'
(10)	if μ' is a leaf node
(11)	check if μ' contains a better solution
(12)	push node μ' into Q

MIP solution Branch-and-bound Simulation-based optimization

Discrete event simulation

- type of simulation used on systems where the state variations are discrete
- computationally "inexpensive"

In our case:

- each simulation run involves some randomness: stack for each item is selected randomly from list of candidates
- different runs lead to different solutions
- at the end, choose the best run (a large number of runs may be required for obtaining good results)
- several stacking strategies (heuristics) can be used and tested

MIP solution Branch-and-bound Simulation-based optimization

Simulation strategy:

Heuristics for choosing a stack for an item are applied

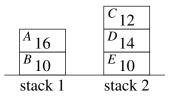
- on arrival of an item
- When moving an item from the top, to reach another below it (*reshuffling*).

Processing order

- delivery has precedence over stacking released items
- "simultaneous" releases are processed by inverse delivery date
- "simultaneous" deliveries are processed from top to bottom of the stack

MIP solution Branch-and-bound Simulation-based optimization

"Simultaneous" deliveries:



No specified order on simultaneous deliveries:

- $2 E: s_2 \rightarrow \mathsf{client}$
- $B: s_1 \rightarrow \text{client}$
 - \hookrightarrow 7 movements

Deliveries processed by item depth:

- $A: s_1 \to s_2$
- $B : s_1 \to \mathsf{client}$
- $I : s_2 \to \mathsf{client}$
 - \hookrightarrow 6 movements

MIP solution Branch-and-bound Simulation-based optimization

Positioning heuristics

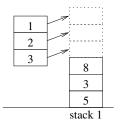
When placing an item

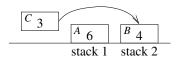
- each position (i.e., each stack) is assigned a value, according to some rules
- construct a **candidate list** of positions with best classification (depends on the heuristics used)
- from this list, randomly choose one for placing the item

MIP solution Branch-and-bound Simulation-based optimization

Heuristics: Optimize flexibility

- we define **flexibility** of a position as the *maximum number of items* with different delivery dates that can be stacked, *without causing an inversion*
- candidate stacks for an item are those which:
 - maximize flexibility and cause no inversion
 - minimize flexibility, if an inversion is unavoidable





MIP solution Branch-and-bound Simulation-based optimization

Simulation-based optimization

- For this stacking heuristics:
 - do N independent simulation runs
 - choose the run that lead to less crane movements
- For each of the N runs:
 - for each item, choose a stack according to the selected heuristics
 - continue processing item releases and deliveries, until having all items delivered
 - return the number of movements required, and the corresponding movement list

Problem description Solution methods Problem variants Conclusions Other objectives

Contents

Problem description

2 Solution methods

- MIP solution
- Branch-and-bound
- Simulation-based optimization

O Problem variants

- More general structures
- Limited movements
- Dynamics
- Other objectives

Conclusions

Problem description Solution methods Problem variants Conclusions Other objectives

Problem variants

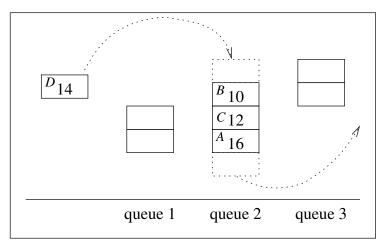
There are many variants of the problem with practical interest:

- stacks are replaced by more general structures, such as double-ended queues; this allows modeling *e.g.* cases where items are placed in a horizontal configuration, with access from two ends;
- crane movements are limited, and thus the number of stacks that can be reached from a given position is limited;
- placement in certain stacks limits crane movements, *i.e.*, the graph of connections is dynamically changed when items are placed;
- crane movements induce significant delays, making the assumption of immediate delivery unviable;
- other objectives.

More general structures Limited movements Dynamics Other objectives

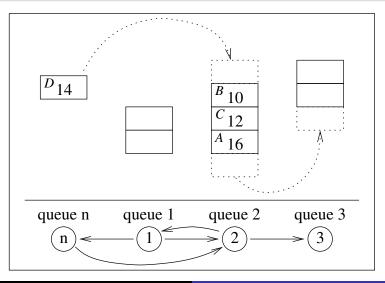
More general structures

E.g., double ended queues



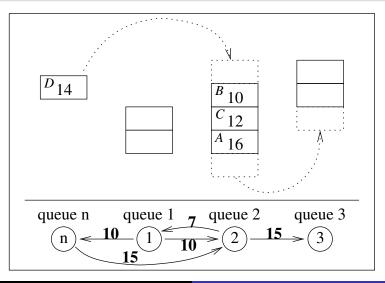
Problem description Solution methods Problem variants Conclusions Other objectives

Limited movements



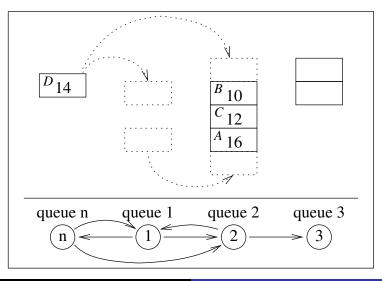
Problem description Solution methods Problem variants Conclusions Other objectives

Dynamics



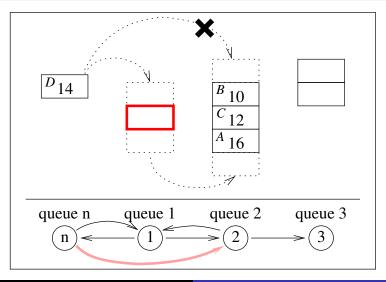
More general structure Limited movements Dynamics Other objectives

Dynamics: allowed movements change 1



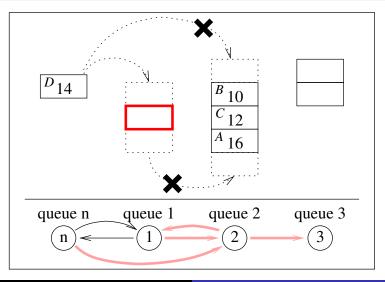
More general structures Limited movements Dynamics Other objectives

Dynamics: allowed movements change 2



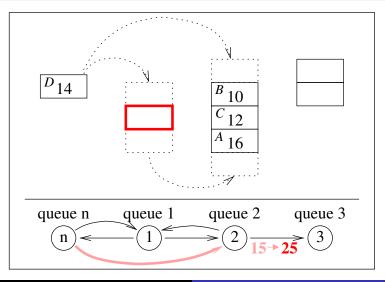
More general structures Limited movements Dynamics Other objectives

Dynamics: allowed movements change 3



More general structures Limited movements Dynamics Other objectives

Dynamics: times change



Problem description Solution methods Problem variants Conclusions Other objectives

Other objectives

Another interesting variant:

- minimize time of service of track/ship;
- 2 items are rearranged before track of ship arrive;
- aim: having the minimum number of movements for loading the track/ship;
- In some variants: more than one item may be moved a the same time.

Contents

Problem description

2 Solution methods

- MIP solution
- Branch-and-bound
- Simulation-based optimization

3 Problem variants

- More general structures
- Limited movements
- Dynamics
- Other objectives

4 Conclusions

Conclusions

- Problem tackled: difficult (decision in one step may have consequences much later).
- For tackling it:
 - MIP model;
 - Specialized branch-and-bound;
 - Simulation-based optimization.
- Problem has many interesting variants.
- Dynamics: configuration may change upon decisions taken.
- Modeling issues: language for formalizing problem description.
- New solution approaches: finite state automata.