Data-Driven Decision Making Assignment 2: Kidney Exchange Optimization

João Pedro PEDROSO

DCC - FCUP, April 2025

In this assignment there will be some questions based on the following exercises. In the assignment's class there will be a set of questions in Codex, with the computers set up as in previous classes. The AMPL book and the classes' slides will be available for consulting.

Note 1: You will be able to use the commercial software AMPL (https://ampl.com), independently or via its Python API. A version with a license for this course is available in https://www.dcc.fc.up.pt/~jpp/AMPL. A well-known solver for dealing well with integer optimization problems is gurobi.

Note 2: Please bring scratch paper, and do not use any other materials or electronic devices during the class.

Note 3: Even though students are encouraged to work in collaboration with a colleague in the solution of this assignment, each student will have to submit his answers separately.

Renal diseases affect thousands of patients, who, to survive, must incur in dialysis — a costly treatment with many negative implications on their quality of life. As an alternative, patients may enter a waiting list for receiving a kidney from a deceased donor; however, waiting times are typically very long.

For reducing the waiting time, another alternative in some countries is to find a healthy living donor — usually, a relative of a person emotionally connected — who volunteers to cede one of his kidneys. However, in some situations transplantation is not possible due to blood, or tissue-level incompatibility. In these cases, a donor-patient (D_1, P_1) may enter a pool of pairs in the same situation; if in the list there is another pair (D_2, P_2) such that D_2 is compatible with P_1 , and P_2 is compatible with P_3 , they may do crossed transplants; this can be represented as a cycle in a graph, as shown in the right-hand figure.

Longer cycles may be allowed. In this particular program, compatible pairs may enter the program, in the hope to obtain a better exchange for the patient.

Compatibilities among blood groups are as follows.

	Patient						
Donor	О	A	В	AB			
O	1	✓	√	√			
A	X	1	X	✓			
В	X	X	1	✓			
AB	Х	X	X	1			

Blood types of patients and donors in the current pool are the following:

Index	Patient	Donor	
1	AB	A	
2	A	AB	
3	AB	O	
4	В	O	
5	A	A	
6	O	В	
7	A	O	
8	A	O	
9	A	O	
10	A	AB	

Note that in the pool some pairs are compatible.

Your task is to find the best donor-patient matching in this pool, i.e., the matching that maximizes the number of transplants.

- 1. Do not consider exchanges within compatible pairs; take the cases where maximum cycle sizes are 2 and 3.
- 2. Consider exchanges within compatible pairs; take the cases where maximum cycle sizes are 2 and 3.
- 3. For the previous case, minimize the number of cycles of size 3, subject to considering that the total number of transplants must be maximum.
- 4. Consider now that the remaining life expectation was assessed for each donor-patient assignment (after transplantation, if positive), as given in the following table.

	Patient									
Donor	1	2	3	4	5	6	7	8	9	10
1	3		6		9		15	19	15	9
2	27		30							
3	22	10	21	21	21	14	7	10	7	13
4	9	9	20	20	20	1	9	9	9	8
5	3	4	13		15		23	17	22	17
6	20		11	14						
7	1		10	11	10		10	11	8	4
8	11		10	10	10	5				2
9	14		4	5	3	5	19	13	18	25
10	23		34							

Assume that transplantation is accepted, for patients that are blood-type compatible with the donor, only if 5 or more years of remaining life are expected. Compute the solution with maximum total survival time.