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Mathematical Optimization

Last class
installation of AMPL
very short introduction to linear optimization
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Using AMPL in the internet

https://neos-server.org/neos/
includes other languages and many solvers

Colab notebook
install dependencies:

%pip install -q amplpy matplotlib pandas

install Python interface:

from amplpy import AMPL, ampl_notebook

ampl = ampl_notebook(
modules=["cbc", "highs"], # modules to install
license_uuid="default", # license to use

) # instantiate

for AMPL models, start each cell as:

%%ampl_eval
# ampl model comes here
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for AMPL models, start each cell as:

%%ampl_eval
var x1 >=0; # define decision variables
var x2 >=0;

maximize z : 300*x1 + 200*x2 ; # objective

R1: x1/40 + x2/60 <= 1; # constraints
R2: x1/50 + x2/50 <= 1;

now we can solve the problem:

%%ampl_eval
option solver "highs";
solve;
display x1, x2;

output:

HiGHS 1.6.0: optimal solution; objective 12000
0 simplex iterations
0 barrier iterations
x1 = 20
x2 = 30
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https://colab.research.google.com
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See also:

AMPL’s colab page:
https://colab.ampl.com/
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Mathematical Optimization

Mathematical optimization: science of finding the "best" solution
Given an objective function, find a solution which is at least as good
as any other possible solution
Course of action:

describe the problem in terms of mathematical expressions
use some methodology to obtain an optimal solution from these
formulas
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Problem description

No ambiguity allowed
Use mathematical expressions

objective function (which we want to maximize of minimize);
conditions of the problem: constraint 1, constraint 2, . . .
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Linear optimization

How can we obtain a solution to the model?
→ linear programming ("optimization in linear structure")

proposed George Dantzig in 1947
based on the work of three Nobel laureate economists:

Wassily Leontief
Leonid Kantrovich
Tjalling Koopmans

Simplex method
developed by Dantzig, has long been the most commong algorithm for
linear optimization problems
considered one of the 10 most important algorithms of last century
in some cases, method requires a very long time → time not bounded
by polynomial, in terms of the size of the problem
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Simplex method

Idea: like solving a system of simultaneous equations
Usually: much more variables than equations
Approach:

fix some variables at zero
solve the system for the remaining
check if current solution is optimum
if not, move to an adjacent solution

swap one zero-variable with a non-zero variable
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Algorithms’ efficiency (in the theoretical sense)

Question: is there an algorithm which solves linear optimization
problems in polynomial time?

ellipsoid method (Leonid Khachiyan, 1979)
only theoretical, in practice simplex method was better

interior point (Karmarkar, 1984)
theoretically efficient
currently, performance similar or higher than the simplex method’s

Currently optimization solvers:
usually equipped with simplex method (and its dual version, the dual
simplex method) and with interior point methods,
users can choose the most appropriate of them
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Linear optimization: simple optimization problem

Example for introducing terminology:

maximize 15x1 + 18x2 + 30x3

subject to: 2x1 + x2 + x3 ≤ 60
x1 + 2x2 + x3 ≤ 60

x3 ≤ 30
x1, x2, x3 ≥ 0

x1, x2, x3 : values that we do not know → variables
assumed to change continuously (real/continuous variables)

first expression: function to be maximized → objective function
constraints: second and subsequent expressions

restrict the value of the variables
sign restrictions or non-negativity constraints → ensure variables are
non-negative
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Linear optimization: simple optimization problem

Example for introducing terminology:

maximize 15x1 + 18x2 + 30x3

subject to: 2x1 + x2 + x3 ≤ 60
x1 + 2x2 + x3 ≤ 60

x3 ≤ 30
x1, x2, x3 ≥ 0

Objective function and constraints: adding and subtracting x1, x2, x3
multiplied by a constant → linear expressions
Maximizing (or minimizing) a linear objective function subject to linear
constraints → linear optimization problem
Set of values for variables x1, x2, x3 → solution

feasible solution → if it satisfies all constraints
optimal solutions → among feasible solutions, those that maximize (or
minimize) the objective function
optimum → maximum/minimum value of objective function

there may be multiple solutions with optimum objective value
usually, the aim is to find just one of them
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Finding optima

Finding an optimum solution: explore the search space in some
methodical way

task of a linear optimization solver
given the problem description, any solver reaches the same optimum
value

though, possibly, a different optimum solution

Problem description: an appropriate language is AMPL
we will separate the description of the problem from the rest of the
program
AMPL: domain-specific language for optimization
subset for linear optimization: implemented in GNU MathProg
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Problem description

Back to our example:

maximize 15x1 + 18x2 + 30x3

subject to: 2x1 + x2 + x3 ≤ 60
x1 + 2x2 + x3 ≤ 60

x3 ≤ 30
x1, x2, x3 ≥ 0

1 var x1 >=0;
2 var x2 >=0;
3 var x3 >=0;
4

5 maximize z: 15*x1 + 18*x2 + 30*x3;
6

7 subject to
8 C1: 2*x1 + x2 + x3 <= 60;
9 C2: x1 + 2*x2 + x3 <= 60;

10 C3: x3 <= 30;
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Steps for writing a model

1 Declare variables; e.g., var x1 >=0;
2 Define objective:

maximize or minimize keywords
objective name followed by : e.g., z: expression

3 Define constraints:
subject to (optional)
constraint name followed by :
constraint expression; types: >= or <= or =

4 All statements should end with semicolon ;

1 var x1 >=0;
2 var x2 >=0;
3 var x3 >=0;
4 maximize z: 15*x1 + 18*x2 + 30*x3;
5 subject to
6 C1: 2*x1 + x2 + x3 <= 60;
7 C2: x1 + 2*x2 + x3 <= 60;
8 C3: x3 <= 30;
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Output

(May be different, depending on the solver used)

1 MINOS 5.51: optimal solution found.
2 3 iterations, objective 1230
3

4 "option abs_boundtol 3.552713678800501e-15;"
5 or "option rel_boundtol 1.1842378929335003e-16;"
6 will change deduced dual values.
7

8 : _varname _var :=
9 1 x1 10

10 2 x2 10
11 3 x3 30
12 ;
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Transportation Problem
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Transportation Problem

Example:
You are the owner of a sports equipment sales chain. Your products
are manufactured at three factories, and you have to deliver them
to five customers (demand points). After elaborating a survey, you
found that the production capacity at each factory, the transporta-
tion cost to customers, and the demand amount at each customer
are as shown in the next table. So, which of the transport routes
would you choose to minimize the total cost?

transportation customers i
cost cij 1 2 3 4 5 capacity Mj

1 4 5 6 8 10 500
plant j 2 6 4 3 5 8 500

3 9 7 4 3 4 500
demand di 80 270 250 160 180
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Transportation Problem

transportation customers i
cost cij 1 2 3 4 5 capacity Mj

1 4 5 6 8 10 500
plant j 2 6 4 3 5 8 500

3 9 7 4 3 4 500
demand di 80 270 250 160 180
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Formulation: notation

Number of customers: n
→ each customer represented by i = 1, 2, . . . , n
→ set of customers: I = {1, 2, . . . , n}
Number of factories m
→ each factory represented by j = 1, 2, . . . ,m
→ set of factories: J = {1, 2, . . . ,m}
Demand amount of customer i → di

Transportation cost for shipping one unit of demand from plant j to
customer i → cij

Production in plant j limited by Mj
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Formulation: model

variables: xij = amount of goods to be transported from factory j to
customer i
model:

minimize
∑
i∈I

∑
j∈J

cijxij

subject to
∑
j∈J

xij = di ∀i ∈ I

∑
i∈I

xij ≤ Mj ∀j ∈ J

xij ≥ 0 ∀i ∈ I , j ∈ J
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Solving with AMPL: a structured approach

We will need to define:
sets (e.g., customers)
parameters (e.g., demand at each customer)
variables, whose values the solver is to determine
objective, to be maximized or minimized
constraints that the solution must satisfy
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AMPL model

File transp.mod

1 set I;
2 set J;
3 param c {I, J};
4 param d {I};
5 param M {J};
6

7 var x {I, J} >=0;
8

9 subject to
10 Demand {i in I}: sum {j in J} x[i,j] = d[i];
11 Supply {j in J}: sum {i in I} x[i,j] <= M[j];
12

13 minimize cost: sum {i in I, j in J} c[i,j] * x[i,j];
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AMPL data

File transp.dat

1 data;
2 param: J: M := # defines set "J" and param "M"
3 1 500
4 2 500
5 3 500;
6 param: I: d := # defines set "I" and param "d"
7 1 80
8 2 270
9 3 250

10 4 160
11 5 180;
12 param c (tr) : # (tr) --> transposed
13 1 2 3 4 5 :=
14 1 4 5 6 8 10
15 2 6 4 3 5 8
16 3 9 7 4 3 4 ;
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Using AMPL in interactive mode

1 ampl: reset; # use when AMPL had a previous model
2 ampl: model transp.mod # load model
3 ampl: data transp.dat # load data
4 ampl: option solver "gurobi"; # use solve called "gurobi"
5 ampl: solve; # solve the problem
6 Gurobi 9.1.1: optimal solution; objective 3370
7 1 simplex iterations
8 ampl: option display_1col 0; # to display variable in tabular form
9 ampl: display x;

10 x [*,*]
11 : 1 2 3 :=
12 1 80 0 0
13 2 20 250 0
14 3 0 250 0
15 4 0 0 160
16 5 0 0 180
17 ;
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Solving with an AMPL script

Typically, AMPL scripts:
load AMPL models and data
choose the solver to use
solve the models
display the solution

model "transp.mod";
data "transp.dat";
option solver "gurobi";
solve;
display cost;
option display_1col 0; # show as table
display x;

output:

$ ampl transp.run
Gurobi 9.1.1: optimal solution; objective 3370
1 simplex iterations
cost = 3370

x [*,*]
: 1 2 3 :=
1 80 0 0
2 20 250 0
3 0 250 0
4 0 0 160
5 0 0 180
;

$
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Solving from Python

1 from amplpy import AMPL, Environment
2 ampl = AMPL() # or AMPL(Environment('full path to the AMPL installation directory'))
3 ampl.option['solver'] = 'gurobi'
4

5 # read model, data, and solve it
6 ampl.read("transp.mod")
7 ampl.readData("transp.dat")
8 ampl.solve()
9

10 # get values at the optimum
11 cost = ampl.obj['cost']
12 x = ampl.var['x']
13 print("Optimum:", cost.value())
14 print("x[1,2]:", x[1, 2].value())
15

16 # using data frames
17 df = x.getValues()
18 print(df)
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Output

$ python transp.py
Gurobi 9.1.1: optimal solution; objective 3370
1 simplex iterations
Optimum: 3370.0
x[1,2]: 0.0

index0 index1 | x.val
1 1 | 80
1 2 | 0
1 3 | 0
2 1 | 20
2 2 | 250
2 3 | 0
3 1 | 0
3 2 | 250
3 3 | 0
4 1 | 0
4 2 | 0
4 3 | 160
5 1 | 0
5 2 | 0
5 3 | 180
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Duality
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Duality

Consider the following scenario:
You are the owner of the sports equipment sales chain that ap-
peared on the previous example. You feel that factory’s capacity
has become tight, so you are considering an expansion. What kind
of expenses can be expected to be reduced by expanding each of
the factories? Also, what is the additional gain that you can you
get if you have additional orders from each customer?
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Duality

In order to solve this problem smartly, the concept of dual problem is
useful
Here:

original problem: primal
associated: dual linear optimization problem (details later)
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Duality: investigate whether a factory should be expanded

Focus on the capacity constraint:∑
i∈I

xij ≤ Mj ∀j ∈ J

1 Supply {j in J}: sum {i in I} x[i,j] <= M[j];

slack variable: difference Mj −
∑

i∈I xij
in AMPL: .slack attribute for a constraint
→ e.g., display Supply.slack;

dual variable
in AMPL: .dual attribute for a constraint
→ e.g., display Supply.dual;
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Duality: analysis

1 Supply {j in J}: sum {i in I} x[i,j] <= M[j];
2 Demand {i in I}: sum {j in J} x[i,j] = d[i];

Optimal value of dual variable
Supply → reduction on costs when increasing the capacity constraint
by one unit
Demand → increase in costs as demand increases by one unit
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Duality: analysis

1 Supply {j in J}: sum {i in I} x[i,j] <= M[j];
2 Demand {i in I}: sum {j in J} x[i,j] = d[i];

1 : Supply.slack Supply.dual :=
2 1 400 0
3 2 0 -1
4 3 160 0
5 ;

1 : Demand.slack Demand.dual :=
2 1 0 4
3 2 0 5
4 3 0 4
5 4 0 3
6 5 0 4
7 ;
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Duality in linear optimization

Optimal value of the dual variable associated to a constraint:
shadow price

impact in the optimum when the right hand side of a constraint is
increased by one unit
AMPL: .dual

Reduced cost associated to a decision variable:
amount by which an objective function coefficient would have to
improve for the variable to become positive value in the optimal
solution
AMPL: .rc
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Duality theory

Using the introductory example:

maximize 15x1 + 18x2 + 30x3

subject to: 2x1 + x2 + x3 ≤ 60
x1 + 2x2 + x3 ≤ 60

x3 ≤ 30
x1, x2, x3 ≥ 0

Original problem: primal problem
as oposed to dual problem

Primal problem: maximization → Dual problem: minimization
First constraint can be written as: 60 − 2x1 − x2 − x3 ≥ 0
We may multiply (60 - 2 x1 - x2 - x3) by π1 ≥ 0 and add it to the
objective; its value will not decrease.

the same for constraints 2 and 3, leading to the following problem
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The following problem’s optimum is an upper bound to the primal’s
optimum

maximize 15x1 + 18x2 + 30x3 +(60 − 2x1 − x2 − x3)π1

+(60 − x1 − 2x2 − x3)π2

+(30 − x3)π3

subject to: . . .

Reorganizing:

maximize (15 − 2π1 − π2)x1 + (18 − π1 − 2π2)x2 +

(30 − π1 − π2 − π3)x3 + 60π1 + 60π2 + 30π3

subject to: . . .

Let us consider that objective, removing all constraints except
non-negativity

excluding constraints guarantees that the optimum value of this
problem is not smaller than that of the original problem
hence, solving this problem gives an upper bound, for arbitrary
π1, π2, π3 ≥ 0
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Reduced costs

maximize (15 − 2π1 − π2)x1 + (18 − π1 − 2π2)x2 +

(30 − π1 − π2 − π3)x3 + 60π1 + 60π2 + 30π3

subject to: x1, x2, x3 ≥ 0

The coefficient of x1, x2, x3 are called reduced costs
represents increase in the optimum cost when a variable x which is 0 is
increased by 1

Let’s consider π as variable (rather than variable x)
We want to obtain the best upper bound of our optimum
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Dual constraints

maximize (15 − 2π1 − π2)x1 + (18 − π1 − 2π2)x2 +

(30 − π1 − π2 − π3)x3 + 60π1 + 60π2 + 30π3

subject to: x1, x2, x3 ≥ 0

If the coefficient (15 − 2π1 − π2) of x1 is positive, the objective
becomes ∞

hence, for a meaningful upper bound, 15 − 2π1 − π2 ≤ 0
similarly, 18 − π1 − 2π2 ≤ 0 and 30 − π1 − π2 − π3 ≤ 0

In terms of variables π1, π2, π3, this is a linear problem
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Dual problem

minimize 60π1 + 60π2 + 30π3

subject to: 2π1 + π2 ≥15
π1 + 2π2 ≥18
π1 + π2 + π3 ≥30
π1, π2, π3 ≥ 0

optimum value of the variables: dual prices or shadow prices
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Duality theory

Weak duality:
the objective value for a feasible solution to the primal (maximization)
problem is always less than or equal to the objective value of any
feasible solution of the associated dual problem
if primal is minimization → objective is greater than or equal to the
dual objective of any (dual) feasible solution

Strong duality theorem: if either the primal or dual has an optimal
solution, then the other also has an optimal solution, and the optimum
is the same

If one of the problems is unbounded, the other is infeasible
But both problems may be infeasible

Complementary slackness: at the optimum, for every constraint:
if the slack is positive, then the shadow price is zero
if the shadow price is positive, then the slack is zero
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Revenue management
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Revenue management

Important applications in reservations inventory, while selling flight
tickets

determine fare classes for each flight in the flight schedule
allocation of seats to each fare class

Setting:
high fixed costs for operating a flight
marginal cost of carrying additional passenger very low
increasing load factor → significant impact in revenues
goods are perishable

Difficulty in maximizing revenue in a flight segment:
selling less expensive seats → additional revenue
turning away higher fare customers → losing revenue
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Revenue management

Key question: is how many seats to sell on discount
Key consideration: passengers have different valuations

e.g., business people value flexibility, people on a vacation may value
good deals
if we sell too many discounted seats → not enough seats for
high-paying passengers
if we sell too few discounted seats → empty seats ⇒ lost revenue
how allocate seats in order to maximize revenue?
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Example: revenue maximization

Consider the management of trains from Braga to Lisbon (through Porto).
Users have alternatives: car, bus
In an attempt to sell more seats, the train company (CP) may offer
discounts
One possible strategy:

selling enough seats to cover fixed operating costs
selling remaining seats at higher rates to maximize revenues
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How to allocate seats

Suppose a train has 200 economy seats
In each trip Lisbon-Braga, there are two types of economy fares:
discount and regular

regular price: 64 euro
discounted price: 22 euro

Demand forecasted for these prices (e.g., using historical data):
regular price: 150 tickets
discounted price: 200 tickets
(forecasts have errors → assess how robust a solution is with
/sensitivity analysis)

In this case, can we infer the solution? How does it vary with demand?
What happens if we have many trains, each doing multiple trips?
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A more complete example

Problem: one train, making Lisbon-Braga trip
Two legs: Lisbon-Porto and Porto-Braga

travelers may go Lisbon-Braga, Lisbon-Porto or Porto-Braga
different prices and demand
train capacity unchanged (200 seats)
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Revenue management: problem formulation

Formulating the problem
mathematically allows us
to solve it in a
systematic way, using
linear optimization
Two legs: Braga-Porto
and Porto-Lisbon

Trip Class Price Dem
L-B regular 64 120

discount 22 220
L-P regular 51 160

discount 19 240
P-B regular 43 150

discount 19 100

Decisions:
Regular seats: RLB ,RLP ,RPB

Discount seats: DLB ,DLP ,DPB

Objective: maximize revenue

64RLB + 51RLP + 43RPB+

22DLB + 19DLP + 19DPB

Constraints:
200 passengers on the plane

RLB + RLP + DLB + DLP ≤ 200
RLB + RPB + DLB + DPB ≤ 200

non-negativity, demand

0 ≤ RLB ≤ 120 0 ≤ RLP ≤ 160 0 ≤ RPB ≤ 150

0 ≤ DLB ≤ 220 0 ≤ DLP ≤ 240 0 ≤ DPB ≤ 100
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Revenue management: problem formulation

maximize 64RLB + 51RLP + 43RPB + 22DLB + 19DLP + 19DPB

subject to RLB + RLP + DLB + DLP ≤ 200
RLB + RPB + DLB + DPB ≤ 200
0 ≤ RLB ≤ 120 0 ≤ RLP ≤ 160 0 ≤ RPB ≤ 150
0 ≤ DLB ≤ 220 0 ≤ DLP ≤ 240 0 ≤ DPB ≤ 100

1 var rLB >=0; var rLP >=0; var rPB >=0;
2 var dLB >=0; var dLP >=0; var dPB >=0;
3

4 maximize z: 64 * rLB + 51 * rLP + 43 * rPB + 22 * dLB + 19 * dLP + 19 * dPB;
5

6 subject to
7 Leg1: rLB + rLP + dLB + dLP <=200;
8 Leg2: rLB + rPB + dLB + dPB <=200;
9

10 Dem_rLB: rLB <= 120; Dem_rLP: rLP <= 160; Dem_rPB: rPB <= 150;
11 Dem_dLB: dLB <= 220; Dem_dLP: dLP <= 240; Dem_dPB: dPB <= 100;
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Back to revenue management

maximize 64RLB + 51RLP + 43RPB + 22DLB + 19DLP + 19DPB

subject to RLB + RLP + DLB + DLP ≤ 200
RLB + RPB + DLB + DPB ≤ 200
0 ≤ RLB ≤ 120 0 ≤ RLP ≤ 160 0 ≤ RPB ≤ 150
0 ≤ DLB ≤ 220 0 ≤ DLP ≤ 240 0 ≤ DPB ≤ 100
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AMPL model

1 var rLB >=0; var rLP >=0; var rPB >=0;
2 var dLB >=0; var dLP >=0; var dPB >=0;
3

4 maximize z: 64 * rLB + 51 * rLP + 43 * rPB + 22 * dLB + 19 * dLP + 19 * dPB;
5

6 subject to
7 Leg1: rLB + rLP + dLB + dLP <=200;
8 Leg2: rLB + rPB + dLB + dPB <=200;
9

10 Dem_rLB: rLB <= 120; Dem_rLP: rLP <= 160; Dem_rPB: rPB <= 150;
11 Dem_dLB: dLB <= 220; Dem_dLP: dLP <= 240; Dem_dPB: dPB <= 100;
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Solution:

1 z = 17360
2

3 rLB = 40
4 rLP = 160
5 rPB = 150
6 dLB = 0
7 dLP = 0
8 dPB = 10
9

10 Leg1 = 45
11 Leg2 = 19
12

13 Dem_rLB = 0 rLB.rc = 0
14 Dem_rLP = 6 rLP.rc = 0
15 Dem_rPB = 24 rPB.rc = 0
16 Dem_dLB = 0 dLB.rc = -42
17 Dem_dLP = 0 dLP.rc = -26
18 Dem_dPB = 0 dPB.rc = 0
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Back to revenue management

CP is trying to figure out whether or not it would be beneficial to
invest in marketing its fares.
The marketing department forecasted that increasing the amount
spent on each category by 10 € is likely to attract one more unit of
demand, for each kind of ticket.
Increasing demand → only relevant if we are already meeting the
current demand

Recall current solution

rLB = 40
rLP = 160
rPB = 150
dLB = 0
dLP = 0
dPB = 10

z = 17360

we’re not even meeting the current demand
for discount fares → additional demand is
irrelevant
e.g., demand could be zero for dPB without
affecting the solution

shadow price for DLB ≤ 220 is 0

so, CP could decrease budget to market all
discount fares and rLB
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Back to revenue management

Shadow prices: dual
variables associated to
constraints

Dem_rLB = 0
Dem_rLP = 6
Dem_rPB = 24
Dem_dLB = 0
Dem_dLP = 0
Dem_dPB = 0

for rLB, rPB, increasing demand would
improve objective

6 € per unit demand of rLB
24 € per unit demand of rLB

so, additional investment in marketing
would be worthy only for regular tickets, leg
Porto-Braga
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More sensitivity analysis

Would it be beneficial to use a bigger trains?
Suppose CP could use a train with 250 places

current train’s cost: 10000 euro per trip
larger train’s cost: 15000 euro per trip

Current revenue = 17360
Which revenue for 250 places?

shadow price of constraints: Leg1 = 45, Leg2 = 19
assuming demand does not change
additional revenue = 50 × (45 + 19) = 3200 < 5000
so, it would not be worthy to increase train’s size
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Next class

Integer optimization
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