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Last class: Duality in linear optimization

Example: primal problem

maximize 15x1 + 18x2 + 30x3

subject to: 2x1 + x2 + x3 ≤ 60
x1 + 2x2 + x3 ≤ 60

x3 ≤ 30
x1, x2, x3 ≥ 0

Example: dual problem

minimize 60π1 + 60π2 + 30π3

subject to: 2π1 + π2 ≥ 15
π1 + 2π2 ≥ 18
π1 + π2 + π3 ≥ 30
π1, π2, π3 ≥ 0
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Last class: Duality: economic interpretation

Optimal value of the dual variable associated to a constraint:
shadow price

impact in the optimum of a unit change in the right hand side

Reduced cost associated to a decision variable:
impact in the optimum when a variable x which is 0 in the optimum is
increased to 1
also, amount by which an objective function coefficient would have to
improve for the variable to become positive value in the optimal
solution
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Last class: linear optimization + duality

slack variable: difference between the right- and the left-hand sides of
a constraint

in AMPL: .slack attribute for a constraint
→ e.g., display Capacity.slack;

dual variable
in AMPL: .dual attribute for a constraint
→ e.g., display Capacity.dual;
or, simply the constraint name → e.g., display Capacity;

reduced cost
in AMPL: .rc attribute for a variable
→ e.g., x.rc;
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Last class: synthesis of duality theory

Weak duality:
objective for any dual-feasible solution "is better" that the objective of
any primal-feasible solution

Strong duality theorem:
optimum (objective) of the dual is equal to the optimum of the primal

Complementary slackness: at the optimum, for every constraint:
if the slack is positive, then the shadow price is zero
if the shadow price is positive, then the slack is zero
note: any solution that satisfies the complementary slackness is optimal
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Integer optimization
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Integer optimization: puzzle example

Adding the number of heads of cranes, turtles and octopuses totals
32, and the number of legs sums to 80. What is the minimum
number for turtles plus octopuses?

Many real-world optimization problems require solutions composed of
integers (instead of real numbers)
Answer to this puzzle: meaningful if solution has integer values only
Formalizing as an optimization problem → formulation

variables:
x → number of cranes
y → number of turtles
z → number of octopuses

constraints:
number of heads is 32
x + y + z = 32
number of legs is 80
2x + 4y + 8z = 80

objective: minimize the number of turtles and octupuses minimize y + z
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Complete description

minimize y + z

subject to: x + y + z = 32
2x + 4y + 8z = 80
x , y , z ≥ 0
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Solve it

1 var x >=0;
2 var y >=0;
3 var z >=0;
4
5 minimize obj: y + z;
6
7 subject to
8 C1: x + y + z = 32;
9 C2: 2*x + 4*y + 8*z = 80;
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Solution?

1 ampl: display x, y, z;
2 1 x 29.3333
3 2 y 0
4 3 z 2.66667
5 ;
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Solution?

1 ampl: display x, y, z;
2 1 x 29.3333
3 2 y 0
4 3 z 2.66667
5 ;
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How to fix it?

We need to add conditions to force the variables to have integer values
→ integrality constraints

minimize y + z

subject to: x + y + z = 32
2x + 4y + 8z = 80
x , y , z ≥ 0, integer

Linear optimization problems requiring variables to be integers: integer
optimization problems
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AMPL

1 var x >=0, integer;
2 var y >=0, integer;
3 var z >=0, integer;
4
5 minimize obj: y + z;
6
7 subject to
8 C1: x + y + z = 32;
9 C2: 2*x + 4*y + 8*z = 80;

1 ampl: display x, y, z;
2 x = 28
3 y = 2
4 z = 2
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AMPL
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4
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6
7 subject to
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9 C2: 2*x + 4*y + 8*z = 80;

1 ampl: display x, y, z;
2 x = 28
3 y = 2
4 z = 2
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Remarks

For small integer optimization problems like this, the answer can be
quickly found
x = 28, y = 2, z = 2
Meaning: there are 28 cranes, 2 turtles and 2 octopuses
Completely different of the continuous version

in general, we cannot guess the value of an integer solution from the
continuous model

Usually, integer-optimization problems are much harder to solve than
linear-optimization problems
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Multi-Constrained Knapsack Problem
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Multi-Constrained Knapsack Problem

Knapsack problem:
fill up a knapsack of certain capacity
items taken from a given set
aim: take collection with maximum value
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Knapsack example

Item
Value: 16
Volume: 3000 cm3

Weight: 2 kg

Item
Value: 19
Volume: 3500 cm3

Weight: 3 kg

Item
Value: 23
Volume: 5100 cm3

Weight: 4 kg

Item
Value: 28
Volume: 7200 cm3

Weight: 5 kg

Knapsack
Maximum volume: 10000 cm3

Maximum weight: 7 kg

?

?

?

?

knapsack’s volume 10,000
cm³
maximum weight: 7 kg
four items:

weight 2, 3, 4, 5
volume 3000, 3500, 5100,
7200
value 16, 19, 23, 28

how to fill the knapsack with
items such that the total
value is maximum?
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Mathematical optimization model

Variables:
xj = 1 if item j is taken
xj = 0 otherwise, j = 1, . . . 4

Constraints:
total weight cannot exceed 7 kg
total volume cannot exceed 10,000 cm³

Model

maximize 16x1 + 19x2 + 23x3 + 28x4

subject to: 2x1 + 3x2 + 4x3 + 5x4 ≤ 7
30x1 + 35x2 + 51x3 + 72x4 ≤ 100
x1, x2, x3, x4 ∈ {0, 1}
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AMPL model

maximize 16x1 + 19x2 + 23x3 + 28x4

subject to: 2x1 + 3x2 + 4x3 + 5x4 ≤ 7
30x1 + 35x2 + 51x3 + 72x4 ≤ 100
x1, x2, x3, x4 ∈ {0, 1}

1 set J; # items
2 set I; # constraints
3 param v {J}; # value of each item
4 param b {I}; # limit on each constraing
5 param a {I,J}; # "weight" of object j in dimension i
6 var x{J} binary;
7
8 maximize z: sum {j in J} v[j] * x[j];
9

10 subject to
11 C {i in I}: sum {j in J} a[i,j] * x[j] <= b[i];
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AMPL data

1 param: J: v :=
2 1 16
3 2 19
4 3 23
5 4 28;
6 param: I: b :=
7 1 7
8 2 100;
9 param a :

10 1 2 3 4 :=
11 1 2 3 4 5
12 2 30 35 51 72;
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Solution

1 x [*] :=
2 1 0
3 2 1
4 3 1
5 4 0
6 ;

Solution found:
take items 2 and 3, leave 1 and 4
total value: 42

Next: briefly sketch how this solution is found
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Branch-and-bound
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Branch-and-bound

In many cases solutions must have integer values
knapsack problem: 1 to include an item, 0 otherwise

Linear optimization cannot be used directly for such cases
variables assume continuous values in linear optimization

If we may add constraints 0 ≤ xj ≤ 1, for all j , but linear optimization
may give fractional values for the solution
Solving integer-optimization models is much harder than linear
optimization
Systematic approach for solving an integer-optimization model: →
branch-and-bound
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Branch-and-bound

Use linear optimization for solving a relaxed model
drop integer requirements on the variables
→ linear-optimization relaxation

If relaxation’s solution is integer → optimum
Otherwise:

systematically subdivide the problem into two subproblems
exclude the previous solution from both of them
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Example

Let us use the previous model
For each variable, replace binary with

0 ≤ xj ≤ 1

Linear optimization → solution:

1 x [*] :=
2 1 1
3 2 1
4 3 0.5
5 4 0
6 ;

→ infeasible
Objective value: 46.5, upper bound to the optimum (why?)
(in minimization problems: lower bound)
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Branching

subproblem 1: x3 ≤ 0 (→ x3 = 0)
subproblem 2: x3 ≥ 1 (→ x3 = 1)
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Solution

UB=46 1
2

x = (1, 1, 1
2 , 0)

UB=45 1
3

x = (1, 1
3 ,1, 0)

feasible

objective=42

x = (0,1,1, 0)

x 2
=
1

UB=44 3
5

x = (1,0,1, 1
5 )

infeasible

x = (?,0,1,1)

x4
=

1

feasible

objective=39

x = (1,0,1,0)

x
4
=

0

x
2
=
0

x3
=

1

UB=46 1
5

x = (1, 1,0, 2
5 )

UB=43

x = ( 7
10 ,

1
5 ,0,1)

infeasible

x = (1, ?,0,1)

x
1
=

1

UB=40 2
3

bounded

x = (0, 2
3 ,0,1)

x
1 =

0
x 4

=
1

feasible

objective=35

x = (1, 1, 0, 0)

x
4
=
0

x
3 =

0
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Branch-and-bound tree

Nodes → subproblems → linear-optimization relaxation
Edges → decisions → reduce some variable’s domain
Leaves:

if feasible → candidate solution
otherwise, can be neglected

Order of visit: important for keeping the tree small
At any time: best found solution is call the incumbent solution
Bounding:

neglect nodes whose upper bound is inferior to the incumbent

When there are not more nodes to expand:
→ incumbent is the optimum
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Different approach: cutting plane method

Branch-and-bound: tree search, creating alternative subproblems
Cutting planes:

when a solution is not integer, add a constraint removing it
general approch: Gomori cuts → approch a feasible solution
often, problem-specific

e.g., for the TSP (will be seen later)
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Practical notes

For difficult problems, there may be limitations on the size of the
problems that can be tackled by the solver
A large number of interesting, real-world problems can be solved
successfully
In other situations, the solver cannot find the optimal solution

but it may find a solution close to the optimum within reasonable time
in many applications, this is enough for practical implementation
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Example

A call center requires different numbers of full-time employees on different
days of the week. The number of full-time employees required on each day
is the following.

Day Number of employees
Monday 17
Tuesday 13
Wednesday 15
Thursday 19
Friday 14
Saturday 16
Sunday 11

Union rules state that each full-time employee must work five consecutive
days and then receive two days off. For example, an employee who works
Monday to Friday must be off on Saturday and Sunday. The call center
wants to meet its daily requirements using only full-time employees.
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Example

1 Formulate a linear optimization problem that the call center can use to
minimize the number of full-time employees who must be hired. Solve
it and analyze its solution.

2 Consider the corresponding integer optimization problem. Solve it and
analyze its solution.
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Location problems
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Facility Location Problems
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Facility location problems

Classical optimization problem for determining the sites for factories
and warehouses

choosing the best among potential sites
subject to constraints requiring that demands are served by established
facilities
objective: select facility sites in order to minimize costs

Typical cost structure:
part proportional to distances from demand points to serving facilities
part related to opening facilities

Facilities may have limited capacities for serving
capacitated
uncapacitated

We will see several formulations and analyse their performance
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Capacitated facility location problem

total demand that each facility may satisfy is limited
modeling:

demand satisfaction
capacity constraints
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Example

A company has three potential sites for installing its facilities and five
demand points
Each site j has a yearly activation cost fj

an annual leasing expense incurred for using it
independently of the volume it serves

Volume is limited to a given maximum yearly amount Mj

Transportation cost cij per unit served from facility j to demand point
i
Customer i 1 2 3 4 5

Annual demand di 80 270 250 160 180
Facility j cost cij fj Mj

1 4 5 6 8 10 1000 500
2 6 4 3 5 8 1000 500
3 9 7 4 3 4 1000 500
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Example

500

500

500

80

180

160

250

270

80

150

270

100

80

80160

80180

Customer i 1 2 3 4 5
Annual demand di 80 270 250 160 180

Facility j cij fj Mj

1 4 5 6 8 10 1000 500
2 6 4 3 5 8 1000 500
3 9 7 4 3 4 1000 500
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Formulation

Customers i ∈ I = {1, 2, . . . , n}
Sites for facilities j ∈ J = {1, 2, . . . ,m}
Variables:

xij ≥ 0 → amount served from facility j to demand point i
yj = 1 if a facility is established at location j , 0 otherwise

minimize
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

cijxij

subject to:
∑
j∈J

xij = di ∀i ∈ I

n∑
i=1

xij ≤ Mjyj ∀j ∈ J

xij ≤ diyj ∀i ∈ I , j ∈ J

xij ≥ 0 ∀i ∈ I , j ∈ J

yj ∈ {0, 1} ∀j ∈ J
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Objective: minimize activation costs + transportation costs
First constraints: demand satisfaction
Second constraints: quantity served from each facility

0 if not activated
facility’s capacity if activated

Third constraints: variable upper bounds
redundant, but yield tighter linear optimization relaxation

minimize
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

cijxij

subject to:
∑
j∈J

xij = di ∀i ∈ I

n∑
i=1

xij ≤ Mjyj ∀j ∈ J

xij ≤ diyj ∀i ∈ I , j ∈ J

xij ≥ 0 ∀i ∈ I , j ∈ J

yj ∈ {0, 1} ∀j ∈ J
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AMPL model

1 set I;
2 set J;
3 param f {J};
4 param c {I, J};
5 param d {I};
6 param M {J};
7
8 var x {I, J} >=0;
9 var y {J} binary;

10
11 subject to
12 Demand {i in I}: sum {j in J} x[i,j] = d[i];
13 Supply {j in J}: sum {i in I} x[i,j] <= M[j] * y[j];
14 Bounds {i in I, j in J}: x[i,j] <= d[i] * y[j];
15
16 minimize cost: sum {j in J} f[j] * y[j] +
17 sum {i in I, j in J} c[i,j] * x[i,j];
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AMPL data

1 data;
2 param: J: M f := # defines set "J" and param "M" and "f"
3 1 500 1000
4 2 500 1000
5 3 500 1000 ;
6 param: I: d := # defines set "I" and param "d"
7 1 80
8 2 270
9 3 250

10 4 160
11 5 180;
12 param c (tr) : # (tr) --> transposed
13 1 2 3 4 5 :=
14 1 4 5 6 8 10
15 2 6 4 3 5 8
16 3 9 7 4 3 4 ;
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Formulation for capacitated case

Customers i ∈ I = {1, 2, . . . , n}
Sites for facilities j ∈ J = {1, 2, . . . ,m}
Variables:

xij ≥ 0 → amount served from facility j to demand point i
yj = 1 if a facility is established at location j , 0 otherwise

minimize
∑
j∈J

fjyj +
∑
i∈I

∑
j∈J

cijxij

subject to:
∑
j∈J

xij = di ∀i ∈ I

n∑
i=1

xij ≤ Mjyj ∀j ∈ J

xij ≤ diyj ∀i ∈ I , j ∈ J

xij ≥ 0 ∀i ∈ I , j ∈ J

yj ∈ {0, 1} ∀j ∈ J
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Weak and strong formulations
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Weak and strong formulations

Consider the facility location problem with no capacity
any quantity may can be produced at each site
uncapacitated facility location problem

One way of modeling: set M very large in∑
i∈I

xij ≤ Mjyj ∀j ∈ J

Notice that we may omit constraints xij ≤ diyj , ∀i ∈ I , j ∈ J

Removing them: problem becomes difficult to solve, especially as size
increases → big M pitfall.
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Big M

∑
i∈I

xij ≤ Mjyj ∀j ∈ J

Idea: model "if we do not activate a warehouse, we cannot transport
from there"
Parameter M represents a large enough number

constraint should be binding if yj = 0
it shouldn’t be active otherwise
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Example (Winstons’ book "Operations Research")

Because of excessive pollution on the Momiss River, the state of
Momiss is going to build pollution control stations. Three sites
(1, 2, and 3) are under consideration. Momiss is interested in
controlling the pollution levels of two pollutants (1 and 2). The
state legislature requires that at least 80,000 tons of pollutant 1
and at least 50,000 tons of pollutant 2 be removed from the river.
The relevant data for this problem are shown below. Formulate an
integer optimization problem to minimize the cost of meeting the
state legislature’s goals.

Cost of Cost of Amount removed (ton)
Site building treating per ton of water

station ($) 1 ton water ($) Pollutant 1 Pollutant 2
1 100000 20 0.40 0.30
2 60000 30 0.25 0.20
3 40000 40 0.20 0.25
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Big M

∑
i∈I

xij ≤ Mjyj ∀j ∈ J

Idea: model "if we do not activate a warehouse, we cannot transport
from there"
Parameter M represents a large enough number

constraint should be binding if yj = 0
it shouldn’t be active otherwise

However:
large values for M do disturb the model in practice
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Modeling tip

A large number M must be set to a value as small as possible
Whenever possible, it is better not to use a large number
If its use is necessary, choose a number that is as small as possible, as
long as the formulation is correct.
Using large numbers, as M = 9999999, is unthinkable, except for very
small instances.
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Exercise

Adapt the previous model to use the minimum value for M

João Pedro Pedroso Data-driven Decision Making 2024/2025 50 / 59



Remarks

For the uncapacitated facility location problem:
correct formulation: set M = total amount demanded

However, it is possible to improve the formulation:
adding xij ≤ diyj

what formulation should we use?
answer depends on the particular case
in general stronger formulations are recommended.

strength → defined in terms of the linear optimization relaxation
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Definition: Strong and Weak Formulations

For some problem: two formulations A and B

Linear optimization relaxation:
exclude integrality constraints

Let feasible regions be PA and PB

If PA ⊂ PB → formulation A is stronger than B

B is weaker than A

Intuitively, if PA is tighter than PB , the bound obtained by the relaxation is
closer to the optimum of the integer problem
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Different formulations
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Ideal formulation
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Case study: facility location problem

Consider formulations:
A → using constraints xij ≤ diyj
B → using only

∑m
j=1 xij ≤

(∑n
i=1 di

)
yj

A is stronger than B

Let us check it:
PA,PB → feasible regions of A and B
constraints for B are obtained by adding those of A
hence :PA ⊆ PB
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Remarks

Truly stronger formulation: either
PA ⊂ PB

verify that the solution of the linear relaxation of B is not included in
PA

"Is it always preferable to use a stronger formulation?"
no theoretical answer
part of the mathematical modeling art → guidance next
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Understanding effect of stronger formulations

Often, stronger formulations require more constraints or variables
previous example:

strong formulation: nm constraints
weak requires only n

Time for solving the linear relaxation:
depends on the number of constraints and variables
likely to be longer for stronger formulation

Trade-off between
shorter times for solving relaxations in weaker formulations
longer computational times for branch-and-bound

Guideline: as the size of the enumeration tree grows very rapidly when the
scale of the problem increases, even if the number of constraints and
variables becomes larger, stronger formulations are usually preferable
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This class:
Optimization problems with integer variables

formulation
how these problems are solved

Next class: Integer optimization
more location problems
optimization in graphs
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