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Last class: Facility Location Problems

Determining the sites for factories and warehouses
modeling:

demand satisfaction
capacity constraints

Capacitated facility location
total demand that each facility may satisfy is limited

Uncapacitated facility location
no limits on total demand → big M

Weak and strong formulations
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Different formulations
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Ideal formulation
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Today:

More Facility Location Problems
k-Median
k-Center
k-Cover

Graph problems
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The k-Median problem
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The k-Median problem

Median problem
Select a given number of facilities from possible points in a graph,
in such a way that the sum of the distances from each customer
to the closest facility is minimized

Often, the number k of facilities to be selected is predetermined in
advance
k median problem:

variant of uncapacitated facility location problem
seeks to establish k facilities without considering fixed costs
each demand point served by exactly one facility
objective: serve all demand points at minimum total cost
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The k-Median problem

Notation:
distance from customer i to facility j → cij
set of customers → {1, . . . , n}
set of potential places for facilities → {1, . . . ,m}
commonly, facilities and customers share the same set of points

Variables:

xij =

{
1 when the demand of customer i is met by facility j
0 otherwise

yj =

{
1 when facility j is open
0 otherwise
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The k-Median problem

minimize
n∑

i=1

m∑
j=1

cijxij

subject to:
m∑
j=1

xij = 1 for i = 1, · · · , n

m∑
j=1

yj = k

xij ≤ yj for i = 1, · · · , n; j = 1, · · · ,m
xij ∈ {0, 1} for i = 1, · · · , n; j = 1, · · · ,m
yj ∈ {0, 1} for j = 1, · · · ,m
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each customer i is assigned to exactly one facility j

m∑
j=1

xij = 1 for i = 1, · · · , n

exactly k facilities are established
m∑
j=1

yj = k

force facility j to be open if it serves demand point i

xij ≤ yj for i = 1, · · · , n; j = 1, · · · ,m

weaker formulation is obtained if we replace these nm constraints by n
constraints

n∑
i=1

xij ≤ nyj , for j = 1, · · · ,m

→ lead to worse values in the linear relaxation
João Pedro Pedroso Data-driven Decision Making 2024/2025 10 / 80



AMPL model

1 param n; # number or customers
2 param m; # number or facilities
3 param c {1..n, 1..m};
4 param k;
5
6 var x {1..n, 1..m} binary;
7 var y {1..m} binary;
8
9 minimize cost: sum {i in 1..n, j in 1..m} c[i,j] * x[i,j];

10
11 subject to
12 Serve {i in 1..n}: sum {j in 1..m} x[i,j] = 1;
13 Kfacil: sum {j in 1..m} y[j] = k;
14 Activate {i in 1..n, j in 1..m}: x[i,j] <= y[j];
15
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AMPL data

1 data;
2 param n := 5;
3 param m := 3;
4 param k := 2;
5 param c (tr) : # (tr) --> transposed
6 1 2 3 4 5 :=
7 1 4 5 6 8 10
8 2 6 4 3 5 8
9 3 9 7 4 3 4 ;
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Illustration

Solution obtained for a graph with 200 vertices placed randomly in the
two-dimensional unit box
Costs given by Euclidean distance
Each of the vertices is a potential location for a facility

João Pedro Pedroso Data-driven Decision Making 2024/2025 13 / 80



João Pedro Pedroso Data-driven Decision Making 2024/2025 14 / 80



Programming

AMPL model: see above
AMPL data: replaced by a Python program

→ see file kmedian_plt.py
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The k-Center Problem
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The k-Center Problem

Center problem
Select a given number of facilities from possible points in a graph, in
such a way that the maximum value of a distance from a customer
to the closest facility is minimized.

Variant of the k-median problem
Assign facilities to a subset of vertices

aim: each customer “close” to some facility

Number k of facilities is predetermined
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The k-Center problem

Notation (same as k-Median):
distance from customer i to facility → j cij
set of customers → {1, . . . , n}
set of potential places for facilities → {1, . . . ,m}
commonly, facilities and customers share the same set of points

Variables (same as k-Median):

xij =

{
1 when the demand of customer i is met by facility j
0 otherwise

yj =

{
1 when facility j is open
0 otherwise

Distance/cost for most distant customer from an activated facility
additional continuous variable z
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The k-Center problem

minimize z

subject to:
m∑
j=1

xij = 1 for i = 1, · · · , n

m∑
j=1

yj = k

xij ≤ yj for i = 1, · · · , n; j = 1, · · · ,m
m∑
j=1

cijxij ≤ z for i = 1, · · · , n

xij ∈ {0, 1} for i = 1, · · · , n; j = 1, · · · ,m
yj ∈ {0, 1} for j = 1, · · · ,m
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New constraint:
m∑
j=1

cijxij ≤ z for i = 1, · · · , n

Determine z to take on at least cij
for all facilities j and customers i assigned to j
weaker (maybe more natural) version:

cijxij ≤ z , for i = 1, · · · , n; j = 1, · · · ,m

intuition: in the strong formulation we are adding more terms in the
left-hand side → feasible region is tighter

New objective: z
minimizing a maximum value → min-max objective
type of problems for which mathematical optimization solvers are
typically weak
instead of the previous objective

minimize
n∑

i=1

m∑
j=1

cijxij
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AMPL model

1 param n; # number or customers
2 param m; # number or facilities
3 param c {1..n, 1..m};
4 param k;
5
6 var x {1..n, 1..m} binary;
7 var y {1..m} binary;
8 var z >= 0;
9

10 minimize maxcost: z;
11
12 subject to
13 Serve {i in 1..n}: sum {j in 1..m} x[i,j] = 1;
14 Kfacil: sum {j in 1..m} y[j] = k;
15 Activate {i in 1..n, j in 1..m}: x[i,j] <= y[j];
16 MinZ {i in 1..n}: sum {j in 1..m} c[i,j] * x[i,j] <= z;
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Programming: same as with kmedian

Observe difference in performance
Observe difference in the solution
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Techniques in linear optimization

"Minimization of the maximum value" can be reduced to a standard
linear optimization

add new variable
make that variable at least as large as each of the values

Assume that we want to minimize the maximum of two linear
expressions:

3x1 + 4x2
2x1 + 7x2.
minimize new variable z subject to:

3x1 + 4x2 ≤ z

2x1 + 7x2 ≤ z
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Related topic: minimization of the absolute value

Minimization of the absolute value |x | of a real variable x :
Nonlinear expression
To linearaize it: add non-negative variables y and z

x = y − z → value of x in terms of y and z
now, |x | can be written as y + z

So:
occurrences of x in the formulation → replaced by y − z
|x | in the objective function → replaced by y + z .

Another possibility:
adding variable z
impose z ≥ x and z ≥ −x
z replaces |x | in the objective function
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Modeling tip

An objective function that minimizes a maximum value should be avoided,
if possible.

In integer optimization → solved by the branch-and-bound method
If the objective function minimizes the maximum value of a set of
variables:

tendency to have large values for the difference between the lower
bound and the upper bound (the so-called duality gap).
time for solving the problem becomes large
if branch-and-bound is interrupted, the incumbent solution is rather
poor.
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The k-Cover Problem
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The k-Cover Problem

Variant to k-center problem
Avoids the min-max objective
Process makes use of binary search
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The k-Cover Problem

Graph Gθ = (V ,Eθ)

set of edges whose distances from a customer to a facility which do not
exceed a threshold value θ
edges: Eθ = {{i , j} ∈ E : cij ≤ θ}

Subset S ⊆ V is called a cover if every vertex i ∈ V is adjacent to at
least one of the vertices in S

Idea: optimum value of the k-center problem ≤ θ if there exists a
cover with cardinality |S | = k on graph Gθ.
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Notation

Variables:
yj = 1 if a facility is opened at j , 0 otherwise

vertex j is in the subset S or not
zi = 1 if vertex i is adjacent to no vertex in S , 0 otherwise

vertex i is covered or not

[aij ] → incidence matrix of Gθ

aij = 1 if vertices i and j are adjacent, 0 otherwise

We need to determine whether or not graph Gθ has a cover |S | = k

We can do that by solving integer-optimization model → k-cover
problem on Gθ
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The k-Cover Problem: model

minimize
n∑

i=1

zi

subject to
m∑
j=1

aijyj + zi ≥ 1 for i = 1, · · · , n

m∑
j=1

yj = k

zi ∈ {0, 1} for i = 1, · · · , n
yj ∈ {0, 1} for j = 1, · · · ,m.

adjacency matrix is built upon a given value of distance θ

used to compute set of facilities that may serve each of the customers
within that distance
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Binary search

Given θ, either:
optimal objective value of the previous optimization problem is zero

k facilities were enough for covering all the customers withing distance
θ
→ reduce θ

greater that zero
there is at least one zi > 0
thus, a customer could not be served from any of the k open facilities
→ increase θ

binary search: repeate until bounds for θ are close enough
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AMPL model

1 param n; # number or customers
2 param m; # number or facilities
3 param c {1..n, 1..m};
4 param k;
5 param theta;
6
7 var y {1..m} binary;
8 var z {1..n} binary;
9

10 minimize cost: sum {i in 1..n} z[i];
11
12 subject to
13 Serve {i in 1..n}:
14 sum {j in 1..m : c[i,j] <= theta} y[j] + z[i] >= 1;
15 Kfacil: sum {j in 1..m} y[j] = k;
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Programming: loading the model

1 random.seed(1)
2 n = 200
3 m = n
4 I,J,c,x_pos,y_pos = make_data(n,m)
5 k = 3
6
7 ampl = AMPL()
8 ampl.option['solver'] = 'gurobi'
9 ampl.read("kcover.mod")

10 ampl.param['n'] = n
11 ampl.param['m'] = n
12 ampl.param['k'] = k
13 ampl.param['c'] = c
14
15 print("solving")
16 start = time.time()
17 facilities,edges = [],[]
18 delta = 1.e-4 # tolerance
19 LB = 0
20 UB = max(c[i,j] for (i,j) in c)
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Programming: binary search

1 delta = 1.e-4 # tolerance
2 LB = 0
3 UB = max(c[i,j] for (i,j) in c)
4 while UB-LB > delta:
5 theta = (UB+LB) / 2.
6 ampl.param['theta'] = theta
7 ampl.solve()
8 cost = ampl.pbj['cost']
9 if cost.value() < 0.5:

10 UB = theta
11 y_ = ampl.var['y']
12 facilities = [j for j in J if y_[j].value() > .5]
13 edges = [(i,j) for i in I for j in facilities if c[i,j] < theta]
14 else: # infeasibility > 0:
15 LB = theta
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Remarks

k-cover within binary search → time comparable k-median check
in practice, k-center solution is usually preferable to k-median

longest time required for serving a customer
may be large on the k-median solution.
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Using k-Cover and binary search: θ = 0 (redundant)

LB:0, theta:0, UB:1.24

João Pedro Pedroso Data-driven Decision Making 2024/2025 36 / 80



Using k-Cover and binary search: θ = max cij (redundant)

LB:0, theta:1.24, UB:1.24
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Using k-Cover and binary search: θ = 0.621

LB:0, theta:0.621, UB:1.24
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Using k-Cover and binary search θ = 0.311

LB:0, theta:0.311, UB:0.621
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Using k-Cover and binary search θ = 0.466

LB:0.311, theta:0.466, UB:0.621
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Using k-Cover and binary search θ = 0.388

LB:0.311, theta:0.388, UB:0.466
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Using k-Cover and binary search θ = 0.427

LB:0.388, theta:0.427, UB:0.466
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Using k-Cover and binary search θ = 0.446

LB:0.427, theta:0.446, UB:0.466
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Using k-Cover and binary search θ = 0.437

LB:0.427, theta:0.437, UB:0.446
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Using k-Cover and binary search θ = 0.442

LB:0.437, theta:0.442, UB:0.446
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Using k-Cover and binary search θ = 0.444

LB:0.442, theta:0.444, UB:0.446
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Using k-Cover and binary search θ = 0.445

LB:0.444, theta:0.445, UB:0.446
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Using k-Cover and binary search θ = 0.445−

LB:0.444, theta:0.445, UB:0.445
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Using k-Cover and binary search θ = 0.445+ (final)

Final k-Cover Solution, theta=0.445
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Using k-Cover and k-Center

Final k-Cover Solution, theta=0.445 k-Median Solution
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Graph problems
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Graph problems

This class:
Based on the definition of a graph

abstract object composed of vertices and edges
edge → link between two vertices

useful tool to unambiguously represent many real problems
many practical optimization problems can be defined naturally with
graphs

Three optimization problems with a combinatorial structure:
graph coloring problem
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Example: friendship relationship as a graph

You have six friends
represent each of them by a circle
in graph theory → called vertices, nodes or points

Some of these fellows have a good relationship between them, others
not
To organize these relashionships:

connect with a line each pair of persons which are in good terms
in graph theory → called an edge, arc or line

This representation is a graph → friendship scenario becomes very
easy to grasp
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Some terminology

Undirected graphs: lines connecting two vertices have no implied
direction

lines with no direction → edges
Directed graphs: direction of lines connecting two vertices is important

directed lines → arcs

Set of vertices: V

Set of edges: E

Graph: G = (V ,E )

Vertices which are endpoints of an edge: adjacent to each other
Edge is incident to vertices at both ends
Number of edges connected to a vertex: degree of the vertex.
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Graph coloring problem

João Pedro Pedroso Data-driven Decision Making 2024/2025 56 / 80



Graph coloring problem

You are concerned about how to assign a class to each of your
friends. Those which are on unfriendly terms with each other are
linked with an edge in the figure below. If put on the same class,
persons on unfriendly terms will start a fight. To divide your friends
into as few classes as possible, how should you proceed?
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Graph coloring problem

Graph:
nodes → persons
edge between two persons → not good friends
three classes are enough to separate persons on unfriendly terms
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Graph coloring problem

Graph:
nodes → persons
edge between two persons → not good friends
three classes are enough to separate persons on unfriendly terms
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Graph coloring: applications

1 Map Coloring
maps of countries
adjacent coutries cannot have the same color
four colors are sufficient ("Four Color Theorem")

2 Scheduling and timetabling
different courses
students enrolled in courses
how to schedule exams so that no common students are scheduled at
same time?

vertex → course
edge → some student on both courses

3 Mobile Radio Frequency Assignment
frequencies are assigned to towers
if towers are "close enough" → interference → frequencies must be
different

tower → vertex
two towers are "close" → edge between them
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Graph coloring: illustration
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Graph coloring: illustration
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Graph coloring problem

Given an undirected graph G = (V ,E ), a K partition is a division of
the vertices V into K subsets V1,V2, . . . ,VK such that

Vi ∩ Vj = ∅,∀i ̸= j → no overlap⋃K
j=1 Vj = V → union of subsets = full set of vertices

Each Vi (i = 1, 2, . . .K ) is called a color class.
In a K partition, if all the vertices in a color class Vi forms a stable
set, it is called K coloring → no edge among two vertices in that class

For a given undirected graph, the graph coloring problem consists of
finding the minimum K for which there is a K coloring

this is called the graph’s chromatic number
applications: timetabling, frequency allocation, . . .
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Graph coloring problem: notation

Requirement: upper bound Kmax of the number of colors
Optimal number of colors K : integer 1 ≤ K ≤ Kmax

Variables (binary):
xik = 1 if a vertex i is assigned color k, 0 otherwise
yk = 1 if color k has been used, 0 otherwise

if yk = 1 → set Vk contains at least one vertex
if yk = 0 → Vk is empty (color k was not required)
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Graph coloring problem: mathematical formulation

minimize
Kmax∑
k=1

yk

subject to
Kmax∑
k=1

xik = 1 ∀i ∈ V

xik + xjk ≤ yk ∀{i , j} ∈ E ; k = 1, . . . ,Kmax

xik ∈ {0, 1} ∀i ∈ V ; k = 1, . . . ,Kmax

yk ∈ {0, 1} k = 1, . . . ,Kmax

First constraint: exactly one color is assigned to each vertex
Second constraint: connects variables x and y

allows coloring with color k only if yk = 1
forbids the endpoints of any edge {i , j} from having the same color
simultaneously
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Remarks

Most mathematical optimization solvers use branch-and-bound
All color classes in the formulation above are treated indifferently →
solution space has a great deal of symmetry
Symmetry causes troubles to branch-and-bound

increases enormously the size of the tree
e.g., solutions V1 = 1, 2, 3,V 2 = 4, 5 and V1 = 4, 5,V 2 = 1, 2, 3 are
equivalent, but are represented by different vectors x and y
in this case, branching on any of the variables x , y leads to no
improvements in the lower bound

Avoiding symmetry in the graph coloring problem
→ use preferentially color classes with low subscripts
may considerably improve solving time

yk ≥ yk+1 k = 1, . . . ,Kmax − 1
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Modeling tip 5

When there is symmetry in a formulation, add constraints for removing it.
When formulations for integer optimization problems have a large
amount of symmetry, the branch-and-bound method is weak
Adding constraints for explicitly breaking symmetry may dramatically
improved solution time
But there are no uniform guidelines. . .

Deciding what constraints should be added is not abvious
adding simple constraints such as those added in the graph coloring
problem often works well
however, in some cases adding elaborate constraints breaks the
structure of the problem, making the solver slower

Careful experimentation is necessary for deciding if such constraints
are useful
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AMPL model

1 set V; # vertices
2 set E within {V,V}; # edges
3 param Kmax default card(V); # upper bound to the number of colors
4 set C := {1..Kmax}; # set of colors
5
6 var x {V, C} binary;
7 var y {C} binary;
8
9 minimize K: sum {k in C} y[k];

10
11 subject to
12 Color {i in V}: sum {k in C} x[i,k] = 1;
13 Edge {(i,j) in E, k in C}: x[i,k] + x[j,k] <= y[k];
14 NoSym {k in 1..Kmax-1}: y[k] >= y[k+1];
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How to instantiate a graph?

1 set V := 1, 2, 3, 4, 5, 6;
2 set E := (1,2) (1,4) (1,5)
3 (2,3) (2,4) (3,4)
4 (3,6) (4,5) (5,6);
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How to solve it?

1 model gcp.mod;
2 data gcp.dat;
3 option solver gurobi;
4 option display_1col 0;
5 solve;
6 display y;
7 display x;

Output

1 optimal solution; objective 3
2 53 simplex iterations
3 y [*] :=
4 1 1
5 2 1
6 3 1
7 4 0
8 5 0
9 6 0

10 ;
11
12 x [*,*]
13 : 1 2 3 4 5 6 :=
14 1 0 1 0 0 0 0
15 2 1 0 0 0 0 0
16 3 0 1 0 0 0 0
17 4 0 0 1 0 0 0
18 5 1 0 0 0 0 0
19 6 0 0 1 0 0 0
20 ;
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Solution

Output

1 optimal solution; objective 3
2 53 simplex iterations
3 y [*] :=
4 1 1
5 2 1
6 3 1
7 4 0
8 5 0
9 6 0

10 ;
11
12 x [*,*]
13 : 1 2 3 4 5 6 :=
14 1 0 1 0 0 0 0
15 2 1 0 0 0 0 0
16 3 0 1 0 0 0 0
17 4 0 0 1 0 0 0
18 5 1 0 0 0 0 0
19 6 0 0 1 0 0 0
20 ;
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Python (check file gcp.py)

1 # V, E = some graph, e.g.:
2 V = [1, 2, 3, 4, 5, 6]
3 E = [(1,2), (1,4), (1,5), (2,3), (2,4), (3,4), (3,6), (4,5), (5,6)]
4
5 from amplpy import AMPL, Environment, DataFrame
6 ampl = AMPL()
7 ampl.option['solver'] = 'gurobi'
8 ampl.read("gcp.mod")
9 ampl.set['V'] = V

10 ampl.set['E'] = E
11 Kmax = len(V)
12 ampl.param['Kmax'] = Kmax
13
14 ampl.solve()
15 K = ampl.obj['K']
16 print("Colors used:", K.value())
17
18 y = ampl.var['y']
19 x = ampl.var['x']
20 for k in range(1,Kmax+1):
21 if y[k].value() > .5:
22 vk = [i for i in V if x[i,k].value() >.5]
23 print("color {} used in {}".format(k,vk))

João Pedro Pedroso Data-driven Decision Making 2024/2025 71 / 80



Graph coloring problem: new approach

Previous model: minimize the number of colors used
determine the chromatic number K

Different approach:
number of colors used is fixed
allow solving larger instances

Idea:
fix number of colors
there is no guarantee that we "color" the graph
measure number of "bad edges" with the same color on both endpoints

New variable: zij = 1 if the endpoints of edge {i , j} have same color, 0
otherwise
New objective: minimize the number of bad edges

if the optimum is 0 → colors assigned are feasible
upper bound to the chromatic number K

if the optimum is positive: there are bad edges
fixed value for the number of colors < K
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Graph coloring problem: minimize bad edges

minimize
∑

{i ,j}∈E

zij

subject to
K∑

k=1

xik = 1 ∀i ∈ V

xik + xjk ≤ 1 + zij ∀{i , j} ∈ E ; k = 1, . . . ,K
xik ∈ {0, 1} ∀i ∈ V ; k = 1, . . . ,K
zij ∈ {0, 1} ∀{i , j} ∈ E

First constraint: exactly one color is assigned to each vertex
Second constraint: edges {i , j} whose endpoints are assigned the same
color class are bad edges → zij = 1
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AMPL model

1 set V;
2 set E within {V,V};
3 param K;
4 set C := {1..K};
5
6 var x {V, C} binary;
7 var z {E} binary;
8
9 minimize Z: sum {(i,j) in E} z[i,j];

10
11 subject to
12 Color {i in V}: sum {k in C} x[i,k] = 1;
13 BadEdge {(i,j) in E, k in C}: x[i,k] + x[j,k] <= 1 + z[i,j];
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How to instantiate a graph?

1 set V := 1, 2, 3, 4, 5, 6;
2 set E := (1,2) (1,4) (1,5)
3 (2,3) (2,4) (3,4)
4 (3,6) (4,5) (5,6);
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How to solve it?

1 model gcp_fixed_k.mod;
2 data gcp.dat;
3 option solver gurobi;
4 option display_1col 0;
5 solve;
6 display y;
7 display x;

Output

1 Z = 2
2
3 z [*,*]
4 : 2 3 4 5 6 :=
5 1 0 . 1 0 .
6 2 . 1 0 . .
7 3 . . 0 . 0
8 4 . . . 0 .
9 5 . . . . 0

10 ;
11
12 x [*,*]
13 : 1 2 :=
14 1 0 1
15 2 1 0
16 3 1 0
17 4 0 1
18 5 1 0
19 6 0 1
20 ;
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Remarks

optimum K :
smallest value such that the optimum above problems is 0
may be determined through binary search

→ check improvement on CPU time used
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Binary search method for solving the graph coloring problem.

Check file gcp_fixed_k.py

1 # V, E = some graph, e.g.:
2 V = [1, 2, 3, 4, 5, 6]
3 E = [(1,2), (1,4), (1,5), (2,3), (2,4), (3,4), (3,6), (4,5), (5,6)]
4
5 from amplpy import AMPL, Environment, DataFrame
6 ampl = AMPL()
7 ampl.option['solver'] = 'gurobi'
8 ampl.read("gcp_fixed_k.mod")
9 ampl.set['V'] = V

10 ampl.set['E'] = E
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1 LB = 0
2 UB = len(V)
3 while UB - LB > 1:
4 K = (UB + LB) // 2
5 print("current K:{}\t[LB:{},UB:{}]".format(K,LB,UB))
6 ampl.param['K'] = K
7 ampl.solve()
8 Z = ampl.obj['Z']
9 print("Bad edges:", Z.value())

10
11 if Z.value() > .5:
12 LB = K
13 z = ampl.var['z']
14 for (i, j) in E:
15 if z[i, j].value() > .5:
16 print("Bad edge:", (i, j))
17 else:
18 UB = K
19 x = ampl.var['x']
20 for k in range(1, K + 1):
21 vk = [i for i in V if x[i, k].value() > .5]
22 print("color {} used in {}".format(k, vk))
23
24 print()
25 print("Chromatic number:", UB)
26 print("color {} used in {}".format(k, vk))

João Pedro Pedroso Data-driven Decision Making 2024/2025 79 / 80



This lesson

Location problems:
k-Median
k-Center
k-Cover
Graph problems

coloring
Models:

how to formulate
how to improve the formulation
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