Data-driven Decision Making Graph problems: Kidney Exchange Programs

João Pedro Pedroso

2024/2025

João Pedro Pedroso

Data-driven Decision Making

2024/2025

1/22

Last class

- matching problems
- kidney exchange problems

Today's class:

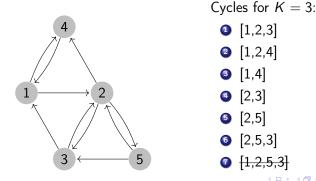
• more on kidney exchange

э

KEP: cycle formulation

João Pedro Pedroso

• • • • • • • • •


æ

- Given:
 - a pool of *n* incompatible donor-patient pairs
 - the compatibility between all donors and all patients
- find the maximum number of kidney exchanges with cycles of size at most *k*

- Is this problem easy to solve?
 - YES, if k = 2 or no limit is imposed on the size of the cycles
 NO, if k = 3, 4, 5, ...
- If k = 2 the problem reduces to finding a maximum matching in a undirected graph, which can be solved efficiently (Edmonds 1965)
- If no limit is imposed on the size of the cycles the problem can be formulated as an assignment problem (can be solved efficiently by hungarian algorithm)
- The problem is NP-hard for k = 3, 4, 5, ... (hence, no polynomial algorithms are known to solve it)

Mathematical programming formulations

- There are several possibilities for modeling the problem in mathematical programming
- One of the most successful is the cycle formulation:
 - enumerate all cycles in the graph with length at most ${\boldsymbol K}$
 - for each cycle c, let variable x_c be 1 if c is chosen, 0 otherwise
 - every feasible solution corresponds to a set of vertex-disjoint cycles

$$\begin{array}{ll} \text{maximize} & \sum_{c} w_{c} x_{c} & (1) \\ \text{subject to} & \sum_{c:i \in c} x_{c} \leq 1 \quad \forall i \in V & (2) \\ & x_{c} \in \{0,1\} \quad \forall c \end{array}$$

- case of 0 1 weights: $w_c = |c|$, (length of cycle c)
- objective: maximize the weight of the exchange
- constraints: every vertex is at most in one cycle
 - (*i.e.*, donate/receive at most one kidney)
- difficulty: exponential number of variables
 - in our experience: not an issue in practice

- Ethically, a sensitive subject
- Most common: maximize total number of transplant
 - easy to explain/justify
 - difficult to dispute
- Our claim: this is not adequate
 - KEPs are typically run periodically
 - most of the pairs will eventually be matched, after waiting a few periods
 - hence, we should look for alternatives
 - \rightarrow somehow access the quality of the transplants

KEP: possible objectives

João Pedro Pedroso

-

→

æ

- For each pair *i*
 - for each possible matching *j* for that pair
 - *i*'s patient may receive kidney of *j*'s donor
 - determine expected survival time for patient s_{ji}
- Then, maximize $\sum s_{ji}$, for all arcs in the solution
- This can be done by assigning the weight w_c for each cycle:

$$w_c = \sum_{ji \in c} s_{ji}$$

- Problem:
 - n^2 weights to determine \rightarrow *not practical, if done manually*
 - solution?

- There is a considerable amount of historical data
- Idea: use historical data to train a machine learning model
- This has been done in the past, but to our knowledge not to parameterize a KEP optimization model
- See, eg., Living Kidney Donor Risk Index (LKDPI) http://www.transplantmodels.com/lkdpi/

LKDPI Score:

This model calculates a risk score for a recipient of a potential live donor kidney.

Live Donor Characteristics:

43	0	
male	0	
female	0	
95	0	
130	0	
24	0	
No	0	
No	0	
Yes	0	
No	0	
70 kg/155 lb	0	
80 kg/178 lb	0	
1	0	
		· · · · · · · · · · · · · · · · · · ·
	female 95 130 24 No No Yes No 70 kg/155 lb 80 kg/178 lb	female 95 130 24 No 24 No Yes No 70 kg/155 lb 80 kg/178 lb ♥

12/22

João Pedro Pedroso

Use past data to train regression model

- features: \rightarrow patients' data
- $\bullet~$ output: $\rightarrow~$ observed survival times
- Ø Gather information concerning patients in current pool
- Parameterize KEP optimization model using pool information + predicted survival times

• Data: generated artificially, loosely based on LKDPI

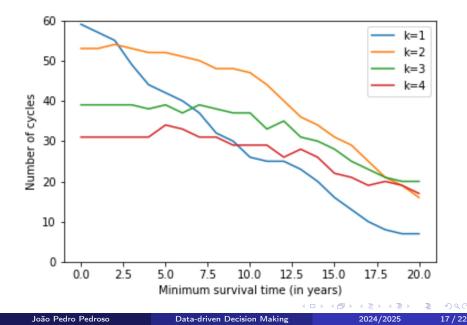
- past data \rightarrow used for training regression model
 - features + survival time
- current pool data (100 patient/donor pairs)
 - patients/donors features
 - \rightarrow used in regression model
 - \rightarrow predict survival time
 - "true" survival time → "ground truth" used for assessing performance/testing

• Optimization model:

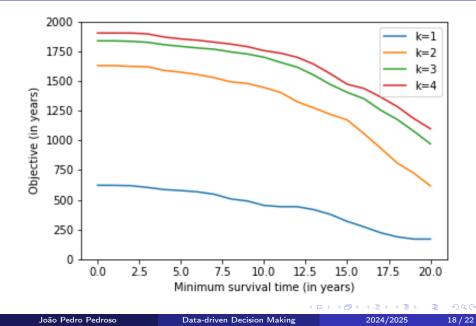
- cycle model
- each cycle's weight w_c : sum of patients' survival times
 - obtained by regression, using donor's and patient's *features*
- objective: maximize survival time summed for all selected cycles
- compatible pairs allowed
- rationality constraint:

compatible pairs only accept donors better than their own

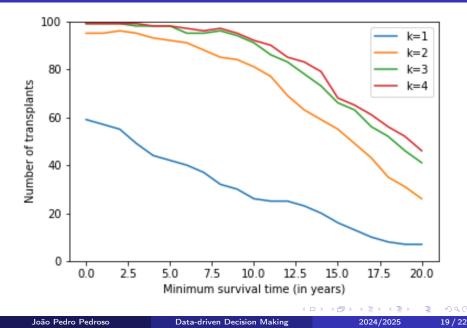
• i.e., leading to longer survival times

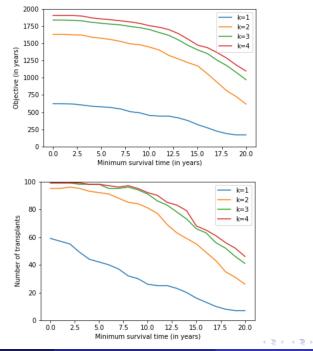

• Assessment:

- compare "ground truth" survival times on:
 - solution with ML + KEP vs. "ground truth" + KEP
 - solution with ML + KEP vs. max-transplants KEP


• Parameter/Ethics:

• we must decide the minimum patient's survival time allowed in the program...


Number of cycles vs. minimum patient's survival time



Results: total survival time vs. minimum survival time

Results: number of transplants vs. minimum survival time

João Pedro Pedroso

Data-driven Decision Making

2024/2025 20/22

æ

Conclusion

Proposed flow: summary

- $\textbf{0} \text{ Use past data to train regression model} \rightarrow \textbf{survival times}$
- Gather information concerning patients
 → predict survival time for each possible donor-patient assignment
- Find all cycles of desired length
 → filter cycles with unacceptably low-survival patients
- Prepare KEP optimization model using this information
- Secure optimization model, retrieve and analyse solution
- In the long run: follow transplanted patients, use survival times to improve regression model

Conclusions

- Are current kidney exchange programs wrong?
 - is the objective correct?
- There seems to be room for improvement

João Pedro Pedroso

Data-driven Decision Making

21 / 22

This lesson

- matching problems
- kidney exchange problems

Next lessons:

- kidney exchange problems
- $\bullet\,$ machine learning $\rightarrow\,$ data-driven components

э