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Last class

Matching problems
Kidney exchange problems

Today’s class:
Machine learning:

motivation
basics

Fundamental algorithms
Building Blocks of a Learning Algorithm:

loss function;
optimization criterion based on the loss function
optimization method to find a solution
basic practice
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Introduction to Machine learning
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Introduction to Machine learning

Bibliography
Machine Learning: essential notions
We’ll follow closely
The Hundred-Page Machine Learning Book
Andriy Burkov
http://themlbook.com/wiki/doku.php

Machine Learning in action: we’ll pick some topics from Hands-On
Machine Learning with Scikit-Learn, Keras, and TensorFlow
Aurélien Géron O’Reilly Media, Inc
Software:

Python
https://www.python.org
Scikit-learn
https://scikit-learn.org
Google colab notebooks
https://colab.research.google.com
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Plan for this course

The Hundred-Page Machine Learning Book: contents:
1 Introduction
2 Notation and Definitions
3 Fundamental Algorithms
4 Anatomy of a Learning Algorithm
5 Basic Practice
6 Neural Networks and Deep Learning
7 Problems and Solutions
8 Advanced Practice
9 Unsupervised Learning
10 Other Forms of Learning
11 Conclusion
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What is Machine Learning

Machine Learning
Algorithms that rely on a collection of examples of some phenomenon

nature
handcrafted by humans
generated by another algorithm

Used for solving practical problems by
1 gathering a dataset
2 algorithmically building a statistical model based on that dataset
3 using the model to solve the problem
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Types of Machine Learning

Supervised learning
based on a dataset with labeled examples
these are used to train (learn) the model

Semi-supervised learning
dataset has labeled and unlabeled examples

Unsupervised learning
dataset has no labels
somehow based on similarity among examples
learn patterns or data groupings from (unlabeled) data

Reinforcement learning
data is acquired from the environment
rewards for actions in given states
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Supervised Learning

Dataset: collection of labeled examples {(xi , yi)}N
i=1

each element xi → feature vector
vector of dimension j = 1, . . . , D
each element → value that somehow describes the example
feature x (j)

e.g., if each example x in our collection represents a person:
feature x (1) → height in cm
feature x (2) → weight in kg
. . .
(position (j) represents the same feature in all examples)

each label yi can be:
element belonging to a finite set of classes {1, 2, . . . , C}

e.g., mail message spam or not_spam
real number

e.g., credit limit to a customer
more complex structure (vector, matrix, tree, graph)
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Goal of a Supervised Learning algorithm

use dataset to produce a model
input: feature vector x
output: its label y

example:
input: vector with elements of a person’s health

weight, BMI, age, . . .
output: probability that the person has cancer
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Unsupervised Learning

Dataset: collection of unlabeled examples {xi}N
i=1

each element xi → feature vector
goal of unsupervised learning:

use dataset to produce a model
input: feature vector x
output: a value/vector

examples:
clustering:

output: ID of cluster to which each xi belongs
dimensionality reduction:

output: selection of features from x
outlier detection:

output: real number indicating how x is different from a "typical"
example in the dataset
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Semi-Supervised Learning

Dataset: collection of labeled and unlabeled examples
Much more unlabeled than labeled
Goal:

same as the goal of the supervised learning algorithm
hope: using many unlabeled examples helps finding a better model
leverage on additional information given by larger sample
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Reinforcement learning

Machine "lives" in an environment
State of environment: vector of features
Machine can execute actions in every state
Different actions → different rewards → may move machine to
another state of the environment
Goal: learn a policy

policy → function that
takes feature vector of a state as input
outputs an optimal action to execute in that state
action is optimal if it maximizes the expected average reward

sequential decision making
long-term goal:

game playing, robotics, resource management, logistics, . . .
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How Supervised Learning Works

1 Gather data
collection of pairs (input, output)
input: email messages, pictures, sensor measurements, . . .
output:

(most common:) real numbers or labels (spam/not_spam,
cat/dog/mouse, . . . )
vectors (e.g., four coordinates of rectangle person on a picture)
sequences (e.g., ["adjective", "adjective", "noun"] for input "big
beautiful car"
some other structure

2 Decide on a learning algorithm
3 Create a model
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Supervised Learning At Work: example

Our problem: spam detection
Data: e.g., 10,000 email messages, each with either label spam or
not_spam
Convert each email message into a feature vector
e.g.: bag of words

to take dictionary of English words
say, 20,000 alphabetically sorted words

stipulate that each feature vector has 20,000 elements
element index j is

1 if word index j in the dictionary is in message
0 otherwise

compute this to each message →
10,000 feature vectors (each with dimension 20,000)
10,000 labels spam/not_spam → 1/0, or +1/− 1

Dataset now ready to use with a learning algorithm to compute a
model
e.g., let the algorithm be support vector machine (SVM)
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Supervised Learning At Work: example: SVM
feature vector → point in a high-dimensional space

in our example: 20,000-dimensional space
algorithm determines 19,999-dimensional hyperplane

separate examples with positive labels from examples with negative
labels

boundary separating examples of different classes →
decision boundary

equation of the hyperplane is given by two parameters:
real-valued vector w (same dimensionality as x)
real number b; equation:

wx − b = 0

wx → w (1)x (1) + w (2)x (2) + . . . + w (D)x (D)

D → dimension of feature vector x
using our model: predict label of some input feature vector x

y = sign(wx − b)

learning ⇔ determining w and b
João Pedro Pedroso Data-driven Decision Making 2024/2025 15 / 61



Goal of the learning algorithm (SVM)

Objective of the SVM: find optimal values w∗ and b∗

SVM model:
f (x) = sign(w∗x − b∗)

To predict whether an email message is spam or not:
take the text of the message
convert it into a feature vector
multiply this vector by w∗, subtract b∗

take the sign of the result
+1 → spam
−1 → not_spam
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Goal of the learning algorithm (SVM)

How to find w∗, b∗?
solve an optimization problem
constraints: correctly predict labels of our i = 1, . . . , 10, 000 examples

wxi − b ≥ +1 if yi = +1
wxi − b ≤ −1 if yi = −1

objective: maximize margin ⇔
minimize ||w|| =

√∑D
j=1(w (j))2

Optimization model (training):

minimize ||w||
subject to yi(wxi − b) ≥ +1 for i = 1, . . .
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SVMs

can also incorporate kernels
make the decision boundary arbitrarily non-linear

usual version of SVM incorporates a penalty hyperparameter
what to pay in the objective for the misclassification of training
examples

hyperparameter:
property of a learning algorithm
often, a numerical value
influence the way the algorithm works
hyperparameter aren’t learned by the algorithm

must be set by data analyst before running the algorithm
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Summary

Any classification learning algorithm that builds a model creates a
decision boundary

implicitly or explicitly
Can be straight, curved, have a complex form, . . .
Form of the decision boundary determines the accuracy of the model

ratio of examples whose labels are predicted correctly
Different learning algorithms:

different decision boundaries
different speed of model building and prediction processing time
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Notation

We’ll follow notation used in
The Hundred-Page Machine Learning Book:

1 Data structures:
scalars: italic letters x , y , z
vectors: boldface letters x, y, z

xi → vector index i (on dataset)
elements of a vector x : (x (1), x (2), . . .)

matrices: bold capital letters X, Y, Z
sets: calligrafic letters X , Y, Z

2 Random variables
denoted with capital letter X , Y , Z
fX → probability density function of X

"examples" → observations of X
"dataset" → collection of examples (i.e., a sample) SX = {xi}N

i=1
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Parameters vs. Hyperparameters

hyperparameters → properties of a learning algorithm
influence the way the algorithm works
not learned by the algorithm from data
set by the data analyst before running the algorithm

parameters → define the model learned
directly modified by the learning algorithm based on the training data
goal of learning: finding parameters that make the model "optimal"
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Classification vs. Regression

Classification: problem of automatically
assigning a label to an unlabeled example

e.g., spam detection
learning algorithm:

takes a collection of labeled examples as inputs
produces a model:
→ take as input an unlabeled example
→ output a label (or a label identifier)

binary classification: two classes
multiclass classification: 3 or more classes

Regression: problem of predicting a
real-valued label for an unlabeled example

e.g., estimating house price valuation based on house features
area, number of bedrooms, location, . . .

learning algorithm:
takes a collection of labeled examples as inputs
produces a model:
→ take as input an unlabeled example
→ output a target
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Model-Based vs. Instance-Based Learning

Most supervised learning algorithms are model-based
e.g., SVM
use the training data to create a model that has parameters learned
from training data

in SVM: w∗, b∗

after the model is built, training data can be discarded
Instance-based learning algorithms:

use the whole dataset as the model
e.g., k-Nearest Neighbors (kNN)

look at neighborhood of input example (in the space of feature vectors)
output:
→ classification: label most often seen
→ regression: average target of neighbors
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Shallow vs. Deep Learning

Shallow learning algorithm:
learns the parameters of the model directly from the features of the
training examples
most supervised learning algorithms are shallow
exceptions: are neural networks

Deep learning algorithm:
deep neural networks

more than one layer between input and output
most model parameters:

not directly learned from the features of training examples
learned from the outputs of the preceding layers
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Linear Regression

Model is a linear combination of input features
Problem statement:

input: labeled examples {(xi , yi)}N
i=1

N → size of the collection
xi ∈ RD → D -dimensional vector i
yi ∈ R → target value

build model fw,b(x) = wx + b
w ∈ RD → D -dimensional vector of parameters
b ∈ R
f is parametrized by w and b

model used to predict the unknown y for a given x
y ← fw,b(x)

find optimal values w∗, b∗

make the most accurate predictions on data
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Linear Regression
Minimize sum of squared errors:

1
N

∑
i=1,...,N

(fw,b(xi) − yi)2

objective function/cost function
loss function: (fw,b(xi) − yi)2

squared error loss/mean squared error (MSE)
Model-based learning: minimize loss function
Linear regression: cost function is average loss

empirical risk
average of all penalties obtained by applying the model to the training
data
quadratic vs absolute value → different models

quadratic is convenient: derivatives
optimum → gradient set to zero

Extensions:
use a higher degree polynomial instead of linear combination
overfitting:

model predicts very well labels of examples used for training
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Overfitting

more powerful models ⇒ higher risk of overfitting
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Logistic Regression

Actually, logistic regression is a classification learning algorithm
Name comes from statistics

mathematical formulation is similar to that of linear regression
Sigmoid/Standard logistic function:

1
1 + e−x

Logistic Regression model

fw,b(x) def== 1
1 + e−(wx+b)
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Standard logistic function
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Logistic Regression

Interpretation: f (x) as the probability of yi being positive
How to find optimal w∗, b∗ ?

maximize likelihood of our training set according to the model
how likely an observation (example) is

For instance:
labeled example (xi , yi) in training data
model: arbitrary ŵ, b̂
applying to xi : fŵ,b̂(xi) → output 0 < p < 1
if yi is the positive class:

likelihood of yi being the positive class given by p
if yi is the negative class:

likelihood of yi being the negative class given by 1− p
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Optimization criterion in logistic regression: maximum
likelihood

Likelihood of the training data:

Lw,b
def==

∏
i=1...N

fw,b(xi)yi (1 − fw,b(xi))1−yi

each term in the product:
fw,b(xi ) when yi = 1
1− fw,b(xi ) otherwise

in practice, to avoid overflow in the exponential, it’s more convenient
to maximize log-likelihood:

LogLw,b
def== log Lw,b
def==

∑
i=1...N

[yi log fw,b(xi) + (1 − yi) log (1 − fw,b(xi))]

no closed form solution → use, e.g., gradient descent to find optimum
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Logistic Regression

Classification learning algorithm
Logistic Regression model

fw,b(x) def== 1
1 + e−(wx+b)

fw,b(x) → likelihood of x being on positive class
1 − fw,b(x) → likelihood of x being on negative class
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Decision Tree Learning
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Decision Tree Learning
Decision tree: acyclic graph used to make decisions

each branching node examines a specific feature j
if value below specific threshold ⇒ follow left branch
otherwise ⇒ follow right branch

leaf node → decision: class to which the example belongs
Problem statement:

input: labeled examples {(xi , yi)}N
i=1

labels yi ∈ {0, 1}
Solution: several possibilities, choosing ID3

average log-likelihood:

1
N

∑
i=1...N

[yi log fID3(xi) + (1 − yi) log (1 − fID3(xi))]

fID3(xi) → decision tree model
ID3 constructs approximate nonparametric model

fID3(x) def== Pr(y = 1|x)
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ID3 steps

Initially: decision tree only has a start node containing all examples

S def== {(xi , yi)}N
i=1

Initial (constant) model:

f S
ID3

def== 1
|S|

∑
(x,y)∈S

y

same prediction f S
ID3(x) for any input x
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ID3 steps (cont.)
Then, search through:

all features j = 1, . . . , D
all thresholds t
and split the set S into two subsets

S−
def== {(x, y)|(x, y) ∈ S, x (j) < t}

S+
def== {(x, y)|(x, y) ∈ S, x (j) ≥ t}

new subsets → two new leaf nodes
evaluate for all possible pairs (j, t) "how good" split with pieces S−
and S+ is
finally:
→ pick the best such values (j, t)
→ split S into S+ and S−
→ form two new leaf nodes
→ continue recursively on S+ and S−

Quit when no split produces a model that’s sufficiently better than
the current one
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ID3: "how good" is a split?

Goodness of a split: estimated by using entropy criterion
measures uncertainty about a random variable
reaches maximum when all values of the random variables are
equiprobable
reaches minimum when random variable can have only one value

Entropy of a set of examples S:

H(S) def== −f S
ID3log(f S

ID3) − (1 − f S
ID3) log(1 − f S

ID3)

Entropy of a split H(S−, S+): weighted sum of two entropies:

H(S−, S+) def== |S−|
|S|

H(S−) + |S+|
|S|

H(S+)
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ID3: stopping criteria

At each step, at each leaf node:
find a split that minimizes entropy
or stop at this leaf node

Criteria for stopping at a leaf node:
all examples there are correctly classified
we cannot find an attribute to split upon
best split reduces the entropy less than some given ϵ
tree reaches some given maximum depth d

Hyperparameters ϵ, d to be found experimentally
Widely used formulation improving ID3: C4.5

accepts both continuous and discrete features
handles incomplete examples
solves overfitting problem by using a bottom-up technique known as
"pruning"

go through the tree once it’s been created
branches that don’t contribute significantly to the error reduction →
replaced by leaf nodes
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Support Vector Machine

More about SVM:
What if there’s noise in the data and no hyperplane can perfectly
separate positive examples from negative ones?
What if the data cannot be separated using a plane, but could be
separated by a higher-order polynomial?

João Pedro Pedroso Data-driven Decision Making 2024/2025 47 / 61



João Pedro Pedroso Data-driven Decision Making 2024/2025 48 / 61



João Pedro Pedroso Data-driven Decision Making 2024/2025 49 / 61



SVM: problem formulation

For convenience, objective is squared:

minimize 1
2 ||w||2

subject to: wxi − b ≥ +1 if yi = +1
wxi − b ≤ −1 if yi = −1i = 1, . . . , N

Constraints can be written as yi(wxi − b) ≥ +1
hard margin SVM

We want to make them "soft": allow violations, at a cost in the
objective

for dealing with noise
Hinge loss function: max(0, 1 − yi(wxi − b))

zero if constraints are satisfied
proportional to the distance to decision boundary if not
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Dealing with noise: Soft-margin SVM

New objective: soft-margin SVM

minimize C ||w||2 + 1
N

N∑
i=1

max(0, 1 − yi(wxi − b))

Hyperparameter C : tradeoff between
increasing the size of the decision boundary
ensuring that each xi lies on the correct side of the decision boundary
value for C :

high → ignore misclassification
low → classification errors more costly
must be chosen experimentally
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SVM: dealing with inherent non-linearity
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transform the original space into a space of higher dimensionality
hope: examples will become linearly separable in this space
SVMs can use a function to implicitly doing this: kernel trick
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SVM: kernel trick
Transform feature space into a higher dimentionality space:
ϕ : x 7→ ϕ(x)

e.g., ϕ([q, p]) def== (q2,
√

2qp, p2)
Problem: we don’t know a priori which mapping would work for our
data
Kernel functions:

tool to efficiently work in higher-dimensional spaces
no need to do this transformation explicitly

Application in SVMs:
using the method of Lagrange multipliers
αi → multiplier associated to example i
optimization problem becomes:

max
α1,...,αN

N∑
i=1

αi − 1
2

N∑
i=1

N∑
k=1

yiαi(xixk)ykαk

subject to:
N∑

i=1
αiyi = 0, αi ≥ 0 i = 1, . . . , N
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SVM: kernel trick

max
α1,...,αN

N∑
i=1

αi − 1
2

N∑
i=1

N∑
k=1

yiαi(xixk)ykαk

subject to:
N∑

i=1
αiyi = 0, αi ≥ 0 i = 1, . . . , N

convex quadratic optimization problem
efficiently solvable

term (xixk)
only place where the feature vectors are used
transform vector space into higher dimensional space:

transform xi into ϕ(xi ) and xk into ϕ(xk)
then multiply ϕ(xi ) by ϕ(xk)
→ would be very costly

we are only interested in the result of the dot-product (xixk)
real number
replace that by operation on original feature vectors with the same
result
→ kernel functionJoão Pedro Pedroso Data-driven Decision Making 2024/2025 57 / 61



SVM: kernel examples
previous example: quadratic kernel

transforming q1, p1 into (q2
1 ,

√
2q1p1, p2

1)
transforming q2, p2 into (q2

2 ,
√

2q2p2, p2
2)

computing dot-product (q2
1 ,

√
2q1p1, p2

1) · (q2
2 ,

√
2q2p2, p2

2)
yields the same result as:

dot-product between (q1, p1) and (q2, p2) → (q1q2 + p1p2)
then square it
same result (q2

1q2
2 + 2q1q2p1p2 + p2

1p2
2)

quadratic kernel: k(x1, xj)
def== (xixk)2

most widely used: radial basis function, RBF kernel

k(x, x′) def== exp
(

−||x − x′||2

2σ2

)

||x − x′||2 → Euclidean distance
infinite number of dimensions (series expansion of exp)
hyperparameter σ → controls how smooth or curvy decision boundary
is in the original space
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k-Nearest Neighbors

Non-parametric learning algorithm
kNN keeps all training examples in memory
Once a previously unseen example x comes in:

algorithm finds k training examples closest to x
returns:

classification → majority label
regression → average label

Closeness of two examples: given by a distance function
Popular choices:

Euclidean distance
Negative cosine similarity

angle between two vectors
Chebychev distance
Hamming distance
. . .

Distance metric could also be learned from data
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Summary: fundamental algorithms

5 basic algorithms:
Linear Regression
Logistic Regression
Decision Tree Learning
Support Vector Machine
k-Nearest Neighbors
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