
Data-driven Decision Making
Machine Learning: more fundamental algorithms

João Pedro Pedroso

2024/2025

Last classes:
▶ Introduction do machine learning
▶ Fundamental algorithms

Today
▶ Building Blocks of a Learning Algorithm:

▶ loss function;
▶ optimization criterion based on the loss function
▶ optimization method to find a solution
▶ Basic practice

Anatomy of a Learning Algorithm

Anatomy of a Learning Algorithm
▶ Building Blocks of a Learning Algorithm:

1. loss function;
2. optimization criterion based on the loss function

▶ cost function
3. optimization method to find a solution

▶ Some algorithms: designed to explicitly optimize a specific
criterion
▶ linear and logistic regressions, SVM

▶ Others optimize the criterion implicitly
▶ decision tree learning and kNN:

▶ among the oldest machine learning algorithms
▶ were invented experimentally based on intuition
▶ specific global optimization criteria were developed later to

explain why those algorithms work
▶ Frequently used optimization algorithms: gradient descent

▶ iterative algorithm for finding local minimum of a function
▶ start at some random point
▶ take steps proportional to the negative of the gradient at the

current point

Gradient Descent
▶ illustration to find solution of linear regression
▶ example based on dataset with one feature

▶ two parameters: w , b
▶ dataset:

▶ spendings of various companies on radio advertising each year
▶ their annual Sales in terms of units sold

▶ regression model: predict units sold based on how much a
company spends on radio advertising
▶ data and programs available in book’s support page

Company Spendings, M$ Sales, Units
1 37.8 22.1
2 39.3 10.4
3 45.9 9.3
4 41.3 18.5

.

Gradient descent: loss function

▶ Loss function

l def== 1
N

N∑
i=1

(yi − (wxi + b))2

▶ Partial derivative for each parameter:
▶ indicate direction of function growth

∂l
∂w = 1

N

N∑
i=1
−2xi(yi − (wxi + b))

∂l
∂b = 1

N

N∑
i=1
−2(yi − (wxi + b))

Gradient descent: epochs

▶ Epoch: using the training set entirely to update each
parameter:

▶ Initilizing w ← 0, b ← 0, then in an epoch update:

w ← w − α
∂l
∂w

b ← b − α
∂l
∂b

▶ α → learning rate
▶ at next epoch:

▶ recalculate partial derivatives
▶ updata again w , b

▶ continue until convergence
▶ w , b don’t change much
▶ then, stop

Python code: updating w , b

def update_w_and_b(spendings, sales, w, b, alpha):
dl_dw = 0.0
dl_db = 0.0
N = len(spendings)
for i in range(N):

dl_dw += -2*spendings[i]*(sales[i] - (w*spendings[i] + b))
dl_db += -2*(sales[i] - (w*spendings[i] + b))

update w and b
w = w - (1/float(N))*dl_dw*alpha
b = b - (1/float(N))*dl_db*alpha
return w, b

Python code: looping over epochs

def avg_loss(spendings, sales, w, b):
N = len(spendings)
total_error = 0.0
for i in range(N):

total_error += (sales[i] - (w*spendings[i] + b))**2
return total_error / float(N)

def train(spendings, sales, w, b, alpha, epochs):
for e in range(epochs):

w, b = update_w_and_b(spendings, sales, w, b, alpha)
log the progress
if e % 400 == 0:

print("epoch:", e, "loss: ", avg_loss(spendings, sales, w, b))
return w, b

Python code: make predictions

def predict(x, w, b):
return w*x + b

Can be called with

w, b = train(x, y, 0.0, 0.0, 0.001, 15000)
x_new = 23.0
y_new = predict(x_new, w, b)
print(y_new)

Remarks
▶ Gradient descent:

▶ sensitive to the choice of learning rate α
▶ slow for large datasets

▶ Many improved variants:
▶ Minibatch stochastic gradient descent

▶ speeds up computation by approximating the gradient using
smaller batches of the training data

▶ Adagrad
▶ version of SGD that scales α for each parameter according to

the history of gradients
▶ α reduced for very large gradients and vice-versa

▶ Momentum
▶ accelerates SGD by orienting the gradient descent in the

relevant direction and reducing oscillations
▶ specific versions for training neural neural network

▶ backpropagation
▶ Gradient descent and variants are not machine learning

algorithms
▶ just solvers of minimization problems
▶ can be used when function to minimize has a gradient

Using Machine Learning

▶ Usually, machine learning users do not implement machine
learning algorithms themselves
▶ use libraries, most of which are open source
▶ most frequently used in practice: scikit-learn
▶ many algorithms available
▶ can be user in a coherent way

from sklearn.linear_model import LinearRegression
we could also try: from sklearn import neighbors

def train(x, y):
model = LinearRegression().fit(x,y)
or: model = neighbors.KNeighborsRegressor(n_neighbors=5).fit(x,y)

return model

model = train(x,y)
x_new = 23.0
y_new = model.predict(x_new)
print(y_new)

Learning Algorithms’ Particularities

What differentiates one learning algorithm from another?
▶ Some algorithms can accept categorical features

▶ e.g., decision tree learning
▶ others expect numerical values for all features

▶ All algorithms implemented in scikit-learn expect
numerical features
▶ next class: how to convert categorical into numerical features

Classification models

▶ Some algorithms allow providing weightings for each class
▶ e.g., SVM
▶ influence how the decision boundary is drawn

▶ high → try to not make errors in predicting training examples
of this class

▶ important if
▶ instances of some class are in the minority in training data
▶ but we want to avoid misclassifying examples of that class

▶ Some only output the class
▶ e.g., SVM, kNN

▶ Other can also return the score between 0 and 1
▶ e.g., logistic regression, decision trees
▶ interpreted as how confident the model is about the prediction

▶ probability that the input example belongs to a certain class

Supervised learning

▶ Some build the model using the whole dataset at once
▶ e.g., decision tree learning, logistic regression, SVM
▶ if we have got additional examples → rebuild model from

scratch
▶ Other algorithms can be trained iteratively, one batch at a

time
▶ e.g., Naïve Bayes, multilayer perceptron
▶ once new training examples are available, we can update

model using only the new data
▶ Some algorithms can be used for both classification and

regression
▶ e.g., decision tree learning, SVM, kNN

▶ Other can only solve one type of problem
▶ either classification or regression, but not both

Using libraries

▶ Usually, libraries provides documentation, explaining
▶ what kind of problem each algorithm solves
▶ what input values are allowed
▶ what kind of output the model produces
▶ also, information on hyperparameters

Summary

▶ more powerful models ⇒ higher risk of overfitting

Basic Practice

Basic Practice

▶ We have seen some issues that we need to consider in
machine learning
▶ feature engineering
▶ overfitting
▶ hyperparameter tuning

▶ These and other aspects must be considered before choosing
and fitting a model

Feature Engineering

Feature Engineering

▶ Prior to selecting and training a model, we need to gather
data
▶ build a dataset

▶ In supervised learning: labeled examples {(xi , yi)}Ni=1
▶ each xi : feature vector

▶ dimension j = 1, . . . , D
▶ contains a value describing the example
▶ each feature is denoted as x (j)

▶ Feature engineering
▶ problem of transforming raw data into a dataset
▶ usually a labor-intensive process that demands domain

knowledge
▶ everything measurable can be used as a feature

▶ we must select/create informative features
▶ aim: allow learning algorithm to build a good model
▶ model with low bias → predicts the training data well

One-Hot Encoding

▶ Some learning algorithms only work with numerical feature
vectors

▶ When some feature is categorical → transform it into several
binary features
▶ e.g.: like "colors" feature with three possible values

"red"→ [1, 0, 0]
"yellow"→ [0, 1, 0]
"green"→ [0, 0, 1]

→ increases dimensionality
▶ We should not transform in numerical values, e.g.1,2,3

▶ this would imply an order between values in this category
▶ order would have implications in the model
▶ algorithm would try to find order where is does not exist

▶ as opposed to, e.g., poor, fair, good, excellent
▶ could be assigned values {1, 2, 3, 4}

Binning

▶ when we have a numerical feature that we want to convert
into a categorical one

▶ process of converting a continuous feature into multiple binary
features
▶ called bins or buckets
▶ typically based on value range
▶ less frequent in practice

▶ e.g., age: in binning we create "additional features", like in
one-hot encoding
▶ bin 1: 0 and 5 years-old → [1, 0, 0, . . .]
▶ bin 2: 6 to 10 years-old → [0, 1, 0, . . .]
▶ . . .

▶ in some cases, a carefully designed binning can help algorithm
to learn better
▶ give a "hint" that when the value of a feature falls within a

specific range, the exact value of the feature doesn’t matter

Normalization

▶ process of converting an actual range of values which a
numerical feature can take, into a standard range of values
▶ typically: interval [−1, 1] or [0, 1]

▶ e.g., for interval [0, 1]:

x̄ (j) = x (j) −min(j)

max(j) −min(j)

▶ min(j)/max(j) → minimum/maximum value of feature j in
dataset

▶ motivations:
▶ consider, e.g., x (1) ∈ [0, 1000], x (2) ∈ [0, 0.0001]
▶ in gradient descent, partial derivative w.r.t. larger feature will

dominate update
▶ also important to limit numeric rounding errors

Standardization (or z-score normalization)
▶ feature values are rescaled so that they have the properties of

a standard normal distribution
▶ mean µ = 0, standard deviation σ = 1
▶ computed over all examples in the dataset

▶ standardized values:

x̂ (j) = x (j) − µ(j)

σ(j)

▶ µ(j)/σ(j) → mean/standard deviation of feature j in dataset
▶ standardization vs normalization: what the book says

▶ unsupervised learning algorithms, in practice, more often
benefit from standardization than from normalization

▶ standardization also preferred if values of the feature are
distributed close to a normal distribution

▶ standardization is preferred for a feature if it can have
extremely high/low values (outliers)

▶ normalization "squeezes" most values into a very small range
▶ all other cases: normalization is preferable

Dealing with Missing Features

▶ In some datasets, values of some features are missing
▶ Often when dataset involves human intervention

▶ some values not filled/not measured
▶ Dealing with missing values for a feature:

▶ remove examples with missing features from the dataset
▶ possible when dataset is big enough to sacrifice some training

examples
▶ use learning algorithm that can deal with missing feature

values
▶ depends on the library/implementation of the algorithm);

▶ use a data imputation technique

Data Imputation Techniques
1. replace missing value by average value of the feature in the

dataset
▶ often, median is better

2. replace missing value with a value outside the normal range
▶ algorithm will learn what is best to do when the feature has a

value significantly different from regular values
3. advanced technique: compute missing value as target in

regression problem
▶ let j be the feature with a missing value
▶ using all remaining features, and all examples except those

with missing x (j)
i

▶ build regression problem with target x (j)

▶ with it, predict target on [x (1)
i , . . . , x (j−1)

i , x (j+1)
i , . . . , x (D)

i]
4. for large dataset with just a few features with missing values:

4.1 increase the dimensionality of feature vectors
4.2 add binary indicator feature for each feature with missing

values
4.3 set that feature equal to 1 on examples where original is

present, 0 otherwise
4.4 missing value then can be replaced by any number (e.g., zero)

Data Imputation Techniques

▶ At prediction time:
▶ if example to predict is not complete → use the same data

imputation technique to fill the missing features
▶ Usually we cannot tell a priori which data imputation

technique will work the best
▶ try several techniques, build several models and select the one

that works the best

Learning Algorithm Selection

Learning Algorithm Selection

▶ How do we select a machine learning algorithm?
▶ if we have much time → try all available
▶ probably not practical

▶ We may select a few models and choose one by testing it on
the validation set
▶ next topic

▶ Consider the algorithm selection diagram of scikit-learn
▶ Next, some points to take into account

https://scikit-learn.org/stable/tutorial/machine_
learning_map

https://scikit-learn.org/stable/tutorial/machine_learning_map
https://scikit-learn.org/stable/tutorial/machine_learning_map

Explainability

Does the model have to be explainable to a non-technical
audience?
▶ very accurate algorithms are often "black boxes"
▶ very few errors, but difficult to understand/explain
▶ simple models are less accurate, but easy to explain
→ e.g., linear regression, kNN, decision trees

In-memory vs out-of-memory

Can the dataset be fully loaded into computer’s RAM?
▶ If yes → wide variety of algorithms
▶ Otherwise: incremental learning algorithms are preferable

▶ models that can be improved by adding more data gradually

Number of features and examples

How large is the the dataset?
▶ Size:

▶ how many examples?
▶ how many features?

▶ Some algorithms can handle a huge number of examples and
features
▶ neural networks, gradient boosting

▶ Others are limited
▶ kNN (all data must be kept in memory)
▶ SVM (underlying optimization method)

Categorical vs. numerical features

▶ Is our data composed of categorical only, or numerical only
features, or a mix of both?
▶ e.g., algorithms in scikit-learn can handle only numerical

features
▶ → convert categorical features into numerical ones

Non-linearity of the data

▶ Are linear models enough?
▶ SVM with the linear kernel, logistic or linear regression can be

good choices
▶ Otherwise, consider kernel SVMs, deep neural networks or

ensemble algorithms

Training speed

▶ How much time is allowed to build a model?
▶ neural networks → slow to train

▶ deep learning → usually require GPUs
▶ simple algorithms are much faster

▶ like logistic and linear regression or decision trees
▶ Libraries may differ on implementation efficiency
▶ Some algorithms are suitable for multiple CPU cores

▶ building time can be significantly reduced on a machine with
dozens of cores

▶ e.g.random forests

Prediction speed

▶ How fast does the model have to be when generating
predictions?
▶ SVMs, linear and logistic regression → extremely fast at

prediction
▶ kNN, ensemble algorithms, very deep neural networks are

slower

Dataset partition

Dataset partition

In any supervised learning project, we need to work with three
distinct sets:

1. training set
2. validation set
3. test set

Steps for preparing them:
▶ shuffle the examples
▶ split the dataset into these three subsets
▶ training set: usually the biggest, used to build the model
▶ validation and test sets

▶ roughly the same sizes, much smaller than training set
▶ learning algorithm cannot use these examples to build the

model
▶ also called holdout sets

Dataset partition

Reason to have three sets:
▶ when we build a model, model is adjusted to training set

▶ training error is optimized
▶ but ultimate goal is to use it in new, unseen data

▶ generalization error → we cannot optimize it
▶ a proxy: error obtained with data not used for training

▶ validation set → used to select among
models/hyperparameters

▶ test set → used only for assessing quality of the final model

Dataset: partition sizes

▶ There’s no optimal proportion to split the dataset
▶ Scarce data: rule of thumb:

▶ 70% for training
▶ 15%/15% for validation/testing
▶ use crossvalidation

▶ Abundant data:
▶ 95% for training
▶ 2.5%/2.5% for validation/testing

Underfitting and Overfitting
▶ If model predicts well the labels of the training data: low bias
▶ If model makes many mistakes on the training data:

▶ high bias
▶ model underfits → not able to predict well the labels of the

data used for training
1. model is too simple for the data
2. features are not informative enough

▶ Overfitting: model predicts very well training data, but poorly
on different data

1. model is too complex for the data
▶ e.g., very deep decision tree/neural network

2. too many features, too few training examples

Overfitting and high variance

▶ In statistics, overfitting is called high variance
▶ variance → errors of the model due to sensitivity to small

fluctuations in the training set
▶ if training data was sampled differently → learning would

result in very different model
▶ Models that overfit perform poorly on the test data

▶ large generalization error

Overfitting and size of the training set
▶ Even a simple model can overfit the data:

▶ if data is high-dimensional (many features)
▶ if number of training examples is low

▶ e.g., linear models in high dimensions:
▶ assign non-zero values to most parameters w (j)

▶ determine complex relationships between all available features
to predict labels of training examples perfectly

▶ usually, very sensitive to small perturbations in data
▶ if N ≈ D → training error ≈ 0

▶ Solutions:
1. Try a simpler/less powerful model

▶ one with less parameters
2. Reduce the dimensionality

▶ select fewer features
▶ use a dimensionality reduction technique

3. Add more training data
4. Regularize the model

Regularization

Regularization
▶ force the learning algorithm to build a less complex model

▶ slightly higher bias
▶ significantly lower variance

▶ bias-variance trade-off
▶ to create a regularized model:

▶ modify the objective function by adding a penalizing term
whose value is higher when the model is more complex

▶ illustration: L1 and L2 regularization

Regularization
Let us consider linear regression
▶ objective:

min
w,b

1
N

N∑
i=1

(fw,b(xi)− yi)2

▶ L1-regularized objective:

min
w,b

[
C |w|+ 1

N

N∑
i=1

(fw,b(xi)− yi)2
]

where |w| def==
D∑

j=1
|w (j)|

C → hyperparameter controlling importance of regularization
▶ L2-regularized objective: use regularization term C ||w||2

||w||2 def==
D∑

j=1
(w (j))2

Effects of regularization

▶ L1 regularization (also known as lasso) produces a sparse
model
▶ most of its parameters are zero, for large enough C

▶ (in case of linear models, most of w(j))
▶ so L1 performs feature selection

▶ choose features that are essential for prediction
▶ can be useful in case you want to increase model explainability

▶ L2 regularization (also known as ridge regularization)
▶ usually models have better performance on holdout data
▶ differentiable → allow using gradient descent

▶ elastic net regularization: combine L1 and L2 regularization
▶ e.g., regularization term (C1|w|+ C2||w||2)

Model Performance Assessment

▶ Question: how good is a model created by a learning
algorithm?
▶ use the test set to assess it
▶ examples not seen before

▶ if our model performs well on them, it "generalizes well"
▶ Assessing model performance

Assessing model performance: regression

Compare model to mean model
▶ model which always predicts the average of labels in training

data
▶ regression model should be better. . .
▶ check performances on training and test data; e.g., mean

squared error
▶ if the MSE on test data is substantially higher than on training

data → overfitting
▶ consider regularization or a better hyperparameter tuning

Assessing model performance: classification

Most widely used metrics:
▶ Confusion Matrix
▶ Precision/Recall
▶ Accuracy
▶ Cost-Sensitive Accuracy
▶ Area under the ROC Curve (AUC)

Illustrations with binary classification

Confusion Matrix

Predicted
Actual True False
True true positives (TP) false negatives (FN)
False false positives (FP) true negatives (TN)

Example: spam detection

Predicted
Actual spam not spam
spam TP=23 FN=1
not spam FP=12 TN=556

▶ correctly classified: TP + TN
▶ mistakes: FP + FN

Precision/Recall

▶ precision: e.g., proportion of correctly classified examples
among those that were classified as positive

precision def== TP
TP + FP

▶ recall: e.g., proportion of correctly classified examples among
those that actually are positive

recall def== TP
TP + FN

Precision/Recall
▶ depending on the problem, it may be important to have good

precision or good recall
▶ consider, eg, detecting cancer

▶ often, we have to choose between high precision or high recall
▶ controlling this trade-off in learning algorithms:

▶ assign higher weighting to examples of a specific class
▶ tune hyperparameters to maximize precision or recall on the

validation set
▶ varying the decision threshold for algorithms that return

probabilities
▶ e.g., logistic regression: we can decide that the prediction will

be positive only if the probability returned by the model is
higher than 0.9.

▶ for using in multiclass classification:
▶ first select class for which we to assess these metrics
▶ then consider:

▶ examples of this class as positives
▶ examples of the remaining classes as negatives

Accuracy

▶ accuracy: proportion of correctly classified examples

accuracy def== TP + TN
TP + TN + FP + FN

▶ useful metric when errors in predicting all classes are equally
important

▶ default in most learning algorithms for classification

Cost-Sensitive Accuracy

▶ cost-sensitive accuracy: useful metric when different classes
have different importance
▶ first assign a cost (a positive number) to both types of

mistakes (FP and FN)
▶ compute TP, TN, FP, FN as usual
▶ multiply the counts for FP and FN by the corresponding cost
▶ use these values for calculating the accuracy

Area under the ROC Curve (AUC)

▶ ROC curve: "receiver operating characteristic"
▶ term comes from radar engineering
▶ use a combination of

▶ true positive rate → proportion of positive examples predicted
correctly (recall)

TPR def== TP
TP + FN

▶ false positive rate → proportion of negative examples
predicted incorrectly

FPR def== FP
FP + TN

▶ can only be used with classifiers that return prediction’s
probability/confidence score

▶ logistic regression, neural networks, decision trees

AUC

To draw a ROC curve:
▶ discretize the range of the confidence score

▶ e.g., [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
▶ use each of these values as the prediction threshold
▶ predict the labels of examples in dataset using the model and

this threshold
▶ threshold = 0 → many false positives, no false negatives
▶ threshold = 1 → many false negatives, no false positives

AUC

▶ the higher the AUC, the better the classifier is
▶ random classifier: AUC = 0.5
▶ perfect classifier: AUC = 1
▶ if model behaves well: we obtain a good classifier by selecting

the value of the threshold that gives
▶ TPR close to 1
▶ keeping FPR near 0

Hyperparameter Tuning

▶ hyperparameters aren’t optimized by the learning algorithm
itself

▶ we have to "tune" them by experimentally finding the best
combination of values

▶ grid search
▶ decide a discrete set of values for each hyperparameter
▶ try all possible combinations
▶ asses performance on validation data
▶ choose model with best performance

▶ then, we can assess that model using the test set

Hyperparameter Tuning: example

▶ suppose we want to train an SVM
▶ two hyperparameters to tune:

▶ the penalty parameter C (a positive real number)
▶ trick: use logarithmic scale
▶ e.g., C ∈ [0.001, 0.01, 0.1, 1, 10, 100, 1000]

▶ kernel (e.g., "linear" or "rbf")
▶ then test combinations

(0.001, “linear”)
(0.01, “linear”)
. . .
(0.001, “rbf”)
. . .
(1000, “rbf”)

▶ choose the one that gave the best performance, on the metric
we chose

▶ problems: trying all combinations quickly becomes too
time-consuming

Hyperparameter Tuning: alternatives

▶ Grid search
▶ very time consuming
▶ tests many combinations that won’t work

▶ Random search
▶ provide a statistical distribution for each hyperparameter
▶ values are randomly sampled and and tested, until reaching the

total number of tentatives we want to try
▶ Bayesian hyperparameter optimization

▶ use past evaluation results to choose the next values to
evaluate

▶ idea: limit the number of tentatives by concentrating on values
that have done well in the past

Cross-Validation

▶ used when the datasets are small
▶ not enough data to have validation set, for tuning

hyperparameters
▶ idea:

▶ split data into training and test set
▶ use cross-validation on the training set to simulate a validation

set
▶ we can use grid search with cross-validation to find the best

hyperparameters
▶ then, use the entire training set to build the model with these

best values of hyperparameters
▶ at the end, assess this model using the test set

Cross-Validation

1. fix the values of the hyperparameters we want to evaluate
2. split training set into several subsets of the same size

▶ each subset is called a fold
▶ e.g., five-fold cross-validation is often used

3. asses each possible model (i.e., each set of parameters) into
all the folders, and average results

4. finally, you assess the model using the test set.

Cross-Validation: suppose 5 folds:

▶ randomly split training data folds {F1, F2, . . . , F5}
▶ each Fk contains 20% of the training data
▶ then, train five models:

▶ to train model f1:
▶ use all examples from folds F2, F3, F4, F5 as training set
▶ use examples from F1 as validation set

▶ to train model f2
▶ use all examples from folds F1, F3, F4, F5 as training set
▶ use examples from F2 as validation set

▶ . . .
▶ average the five values of the metric

▶ use this value as for evaluating the model

Challenges

Challenge 1: decision trees

▶ Explore the way decision trees work using scikit-learn’s page:
https://scikit-learn.org/stable/auto_examples/
tree/plot_unveil_tree_structure.html
▶ Try different values for some of the hyperparameters; check

how you would classify the last example in tha data if you set
each of these hyperparameters to 3:

▶ max_leaf_nodes
▶ max_depth
▶ min_samples_split

https://scikit-learn.org/stable/auto_examples/tree/plot_unveil_tree_structure.html
https://scikit-learn.org/stable/auto_examples/tree/plot_unveil_tree_structure.html

Challenge 2: kernel-based SVM

▶ Follow the SVM tutorial on scikit-learn’s page:
https://scikit-learn.org/stable/modules/svm.html
▶ focus on examples of non-linear SVMs and their parameters
▶ check which kernels are avalailble, and try a few of them
▶ does the decision boundary change with the kernel?

https://scikit-learn.org/stable/modules/svm.html

Challenge 3: nearest neighbors

▶ Follow the k-nearest neighbors tutorial on scikit-learn’s page:
https:
//scikit-learn.org/stable/modules/neighbors.html
▶ understand how it works both on classification and on

regression
▶ check the influence of parameter k; with increasing k, does the

boundary become smoother or more irregular? what would you
expect in terms of under/overfitting?

https://scikit-learn.org/stable/modules/neighbors.html
https://scikit-learn.org/stable/modules/neighbors.html

