Week 8 Data-Driven Decision Methods
2024,/2025, DCC-FCUP CC4074+CC4094

1. Model building in scikit-learn. (These steps are from the tutorial available in|scikit-learn.org.)

(a) Fitting and predicting: estimator basics. FEstimators are machine learning algorithms that
can be fitted to some data. Test the following example, and inspect the parameters of the
model created.

from sklearn.ensemble import RandomForestClassifier
clf = RandomForestClassifier(random_state=0)
X=[[1, 2, 3], # 2 samples, 3 features

[11, 12, 13]1]
y = [0, 1] # classes of each sample
clf . fit(X, y)

(b) X is a matrix, typically n_samples X n_features: observations are represented as rows and
features as columns. In supervised learning, the target values y which are real numbers for
regression tasks, or discrete values (typically) integers for classification. Both X and y are
usually expected to be numpy arrays. Once the estimator is fitted, it can be used for predicting
target values of new data; try:

clf .predict(X) # predict classes of the training data
clf.predict([[4, 5, 6], [14, 15, 16]]) # predict classes of new data

(¢) A typical pipeline in machine learning consists of a pre-processing step that transforms or
imputes the data, and a final predictor that predicts target values. A transformer is used,
e.g., when we want to scale features to comparable ranges; imputing is used to fill empty values.
In scikit-learn, pre-processors and transformers follow the same API as the estimator objects;
instead of predict, they provide a transform method that outputs a newly transformed
sample matrix X. Try:

from sklearn.preprocessing import StandardScaler
StandardScaler() .fit(X) .transform(X)

(d) Transformers and estimators (predictors) can be combined into a unifying object called a
pipeline, offering the same API as a regular estimator. Study the following code:

from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline

from sklearn.datasets import load_iris

from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

# create a pipeline object

pipe = make_pipeline(
StandardScaler (),
LogisticRegression()

# load the iris dataset and split it into train and test sets
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split (X, v, random_state=0)

# fit the whole pipeline


https://scikit-learn.org/stable/getting_started.html

pipe.fit(X_train, y_train)

# we can now use it like any other estimator
accuracy_score(pipe.predict(X_test), y_test)

Model evaluation: fitting a model to some data does not entail that it will predict well on
unseen data. This needs to be evaluated; the most common tool is cross-validation, which
splits a dataset into train and test sets in a systematic way. Study the following 5-fold cross-
validation procedure:

from sklearn.datasets import make_regression
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import cross_validate

X, y = make_regression(n_samples=1000, random_state=0)
r = LinearRegression()

—

result = cross_validate(lr, X, y) # defaults to 5-fold CV
result['test_score'] # r_squared score is high because dataset is easy

All estimators have hyper-parameters, which cannot be learned; rather, they can be tuned.
The generalization power of an estimator often critically depends on a few parameters. For
example, a RandomForestRegressor has hyper-parameters n_estimators (determining the
number of trees in the forest) and max_depth (determining the maximum depth of each tree).
Good values for hyper-parameters are difficulty to know in advance, and hence are determined
experimentally (using cross-validation). In the following example, parameters of a random
forest are searched with RandomizedSearchCV. When the search is over, RandomizedSearchCV
behaves as a RandomForestRegressor that has been fitted with the best set of parameters.

from sklearn.datasets import fetch_california_housing
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import RandomizedSearchCV
from sklearn.model_selection import train_test_split
from scipy.stats import randint

X, y = fetch_california_housing(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

# define the parameter space that will be searched over
param_distributions = {'n_estimators': randint(1l, 5), 'max_depth': randint(5, 10)}

# create a searchCV object and fit it to the data

search = RandomizedSearchCV(estimator=RandomForestRegressor (random_state=0),
n_iter=5,
param_distributions=param_distributions,
random_state=0)

search.fit(X_train, y_train)

print (search.best_params_)

# the search object now acts like a normal random forest estimator
# with max_depth=9 and n_estimators=4
search.score(X_test, y_test)



2. For this exercise, consider the dataset iris; it can be loaded in scikit-learn with

from sklearn.datasets import load_iris
iris = load_iris()

X = iris.data

y = iris.target

Information about this dataset is available in the attribute iris.DESCR, and the names of the
classes in iris.target_names.

We may divide this dataset using the so-called leave-one-out method, making a training set with
all the examples except one (which can then be used for testing) with

from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=956, test_size=1)

A decision tree model may be trained with X_train, y_train, and then visualized with:

from matplotlib import pyplot as plt

from sklearn.tree import DecisionTreeClassifier
from sklearn import tree

clf = DecisionTreeClassifier (random_state=0)
clf . fit(X_train, y_train)

tree.plot_tree(clf)

plt.show()

The class of a new example (e.g., X_test) can now be determined with

y_pred = clf.predict(X_test)
print(iris.target_names[y_pred])

The "probability " of that classification can be inspected with y_prob = clf.predict_proba(X_test).
Beware that Python starts indexing lists with zero.

(a) Inspect the example left for testing. Determine its true class.

(b) Construct a decision tree classifier with the hyperparameter max_leaf_nodes=3. By observing
the tree, determine the class attibutted to the example left out.

(¢) Determine how scikit-learn classifies the example left out, using the previous model.

(d) Construct a decision tree classifier with the hyperparameter max_depth=3. By observing the
tree, determine how the example left out can be classified.

(e) Determine how scikit-learn classifies the example left out, using the previous model.

(f) Construct a decision tree classifier with the hyperparameter min_samples_split=3. By ob-
serving the tree, determine how the example left out is classified.

(g) Determine how scikit-learn classifies the example left out, using the previous model.



