
Branch-and-Bound Approach
for Machine-Scheduling Problem

Example 10 illustrates how a branch-and-bound approach may be used to schedule jobs
on a single machine. See Baker (1974) and Hax and Candea (1984) for a discussion of
other branch-and-bound approaches to machine-scheduling problems.

Four jobs must be processed on a single machine. The time required to process each job
and the date the job is due are shown in Table 63. The delay of a job is the number of
days after the due date that a job is completed (if a job is completed on time or early, the
job’s delay is zero). In what order should the jobs be processed to minimize the total de-
lay of the four jobs?

Solution Suppose the jobs are processed in the following order: job 1, job 2, job 3, and job 4. Then
the delays shown in Table 64 would occur. For this sequence, total delay ! 0 " 6 " 3 "
7 ! 16 days. We now describe a branch-and-bound approach for solving this type of
machine-scheduling problem.

Because a possible solution to the problem must specify the order in which the jobs
are processed, we define

xij ! !
The branch-and-bound approach begins by partitioning all solutions according to the job
that is last processed. Any sequence of jobs must process some job last, so each sequence
of jobs must have x14 ! 1, x24 ! 1, x34 ! 1, or x44 ! 1. This yields four branches with
nodes 1–4 in Figure 23. After we create a node by branching, we obtain a lower bound
on the total delay (D) associated with the node. For example, if x44 ! 1, we know that
job 4 is the last job to be processed. In this case, job 4 will be completed at the end of
day 6 " 4 " 5 " 8 ! 23 and will be 23 # 16 ! 7 days late. Thus, any schedule having

if job i is the jth job to be processed

otherwise

1

0

528 C H A P T E R 9 Integer Programming

Branch-and-Bound Machine SchedulingE X A M P L E 1 0

TA B L E 63
Durations and Due Date of Jobs

Days Required to
Job Complete Job Due Date

1 6 End of day 8
2 4 End of day 4
3 5 End of day 12
4 8 End of day 16

TA B L E 64
Delays Incurred If Jobs Are Processed in the Order 1–2–3–4

Completion Delay
Job Time of Job of Job

1 6 " 4 " 5 " 8 ! 26 10 # 14 ! 0
2 6 " 4 " 6 " 4 ! 10 10 # 14 ! 6
3 6 " 6 " 4 " 5 ! 15 15 # 12 ! 3
4 6 " 4 " 5 " 8 ! 23 23 # 16 ! 7

x44 ! 1 must have D $ 7. Thus, we write D $ 7 inside node 4 of Figure 23. Similar rea-
soning shows that any sequence of jobs having x34 ! 1 will have D $ 11, x24 ! 1 will
have D $ 19, and x14 ! 1 will have D $ 15. We have no reason to exclude any of nodes
1–4 from consideration as part of the optimal job sequence, so we choose to branch on a
node. We use the jumptracking approach and branch on the node that has the smallest
bound on D: node 4. Any job sequence associated with node 4 must have x13 ! 1, x23 !
1, or x33 ! 1. Branching on node 4 yields nodes 5–7 in Figure 23. For each new node,
we need a lower bound for the total delay. For example, at node 7, we know from our
analysis of node 1 that job 4 will be processed last and will be delayed by 7 days. For
node 7, we know that job 3 will be the third job processed. Thus, job 3 will be completed
after 6 " 4 " 5 ! 15 days and will be 15 # 12 ! 3 days late. Any sequence associated
with node 7 must have D $ 7 " 3 ! 10 days. Similar reasoning shows that node 5 must
have D $ 14, and node 6 must have D $ 18. We still do not have any reason to elimi-
nate any of nodes 1–7 from consideration, so we again branch on a node. The jumptrack-
ing approach directs us to branch on node 7. Any job sequence associated with node 7
must have either job 1 or job 2 as the second job processed. Thus, any job sequence as-
sociated with node 7 must have x12 ! 1 or x22 ! 1. Branching on node 7 yields nodes 8
and 9 in Figure 23.

Node 9 corresponds to processing the jobs in the order 1–2–3–4. This sequence yields
a total delay of 7 (for job 4) " 3 (for job 3) " (6 " 4 # 4) (for job 2) " 0 (for job 1) !
16 days. Node 9 is a feasible sequence and may be considered a candidate solution having
D ! 16. We now know that any node that cannot have a total delay of less than 16 days
can be eliminated.

Node 8 corresponds to the sequence 2–1–3–4. This sequence has a total delay of 7 (for
job 4) " 3 (for job 3) " (4 " 6 # 8) (for job 1) " 0 (for job 2) ! 12 days. Node 8 is a
feasible sequence and may be viewed as a candidate solution with D ! 12. Because node
8 is better than node 9, node 9 may be eliminated from consideration.

Similarly, node 5 (having D $ 14), node 6 (having D $ 18), node 1 (having D $ 15),
and node 2 (having D $ 19) can be eliminated. Node 3 cannot yet be eliminated, because
it is still possible for node 3 to yield a sequence having D ! 11. Thus, we now branch on
node 3. Any job sequence associated with node 3 must have x13 ! 1, x23 ! 1, or x43 !
1, so we obtain nodes 10–12.

For node 10, D $ (delay from processing job 3 last) " (delay from processing job 1
third) ! 11 " (6 " 4 " 8 # 8) ! 21. Because any sequence associated with node 10

9 . 6 Solving Combinatorial Optimization Problems by the Branch-and-Bound Method 529

Node 1
D ≥ 15

Node 2
D ≥ 19

Node 3
D ≥ 11

Node 4
D ≥ 7

x14 = 1

x13 = 1
x23 = 1 x23 = 1

x13 = 1 x33 = 1

x12 = 1
x22 = 1

x43 = 1

x24 = 1 x34 = 1 x44 = 1

Node 10
D ≥ 21

Node 11
D ≥ 25

Node 12
D ≥ 13

Node 5
D ≥ 14

Node 6
D ≥ 18

Node 8
D = 12

Node 9
D = 16

Node 7
D ≥ 10

F I G U R E 23
Branch-and-Bound Tree
for Machine-Scheduling

Problem

must have D $ 21 and we have a candidate with D ! 12, node 10 may be eliminated.
For node 11, D $ (delay from processing job 3 last) " (delay from processing job 2

third) ! 11 " (6 " 4 " 8 # 4) ! 25. Any sequence associated with node 11 must have
D $ 25, and node 11 may be eliminated.

Finally, for node 12, D $ (delay from processing job 3 last) " (delay from processing
job 4 third) ! 11 " (6 " 4 " 8 # 16) ! 13. Any sequence associated with node 12 must
have D $ 13, and node 12 may be eliminated.

With the exception of node 8, every node in Figure 23 has been eliminated from con-
sideration. Node 8 yields the delay-minimizing sequence x44 ! x33 ! x12 ! x21 ! 1. Thus,
the jobs should be processed in the order 2–1–3–4, with a total delay of 12 days resulting.

Branch-and-Bound Approach
for Traveling Salesperson Problem

Joe State lives in Gary, Indiana. He owns insurance agencies in Gary, Fort Wayne, Evans-
ville, Terre Haute, and South Bend. Each December, he visits each of his insurance agen-
cies. The distance between each agency (in miles) is shown in Table 65. What order of
visiting his agencies will minimize the total distance traveled?

Solution Joe must determine the order of visiting the five cities that minimizes the total distance
traveled. For example, Joe could choose to visit the cities in the order 1–3–4–5–2–1. Then
he would travel a total of 217 " 113 " 196 " 79 " 132 ! 737 miles.

To tackle the traveling salesperson problem, define

xij ! !
Also, for i % j,

cij ! distance between cities i and j

cii ! M, where M is a large positive number

It seems reasonable that we might be able to find the answer to Joe’s problem by solving an
assignment problem having a cost matrix whose ijth element is cij. For instance, suppose we
solved this assignment problem and obtained the solution x12 ! x24 ! x45 ! x53 ! x31 ! 1.
Then Joe should go from Gary to Fort Wayne, from Fort Wayne to Terre Haute, from Terre
Haute to South Bend, from South Bend to Evansville, and from Evansville to Gary. This so-
lution can be written as 1–2–4–5–3–1. An itinerary that begins and ends at the same city and
visits each city once is called a tour.

if Joe leaves city i and travels next to city j

otherwise

1

0

530 C H A P T E R 9 Integer Programming

Traveling Salesperson ProblemE X A M P L E 1 1

TA B L E 65
Distance between Cities in Traveling Salesperson Problem

Fort Terre South
Day Gary Wayne Evansville Haute Bend

City 1 Gary 0 132 217 164 58
City 2 Fort Wayne 132 0 290 201 79
City 3 Evansville 217 290 290 113 303
City 4 Terre Haute 164 201 113 0 196
City 5 South Bend 58 79 303 196 0

