
4.12 The Big M Method
Recall that the simplex algorithm requires a starting bfs. In all the problems we have
solved so far, we found a starting bfs by using the slack variables as our basic variables.
If an LP has any ! or equality constraints, however, a starting bfs may not be readily ap-
parent. Example 4 will illustrate that a bfs may be hard to find. When a bfs is not read-
ily apparent, the Big M method (or the two-phase simplex method of Section 4.13) may
be used to solve the problem. In this section, we discuss the Big M method, a version of
the simplex algorithm that first finds a bfs by adding “artificial” variables to the problem.
The objective function of the original LP must, of course, be modified to ensure that the
artificial variables are all equal to 0 at the conclusion of the simplex algorithm. The fol-
lowing example illustrates the Big M method.

Bevco manufactures an orange-flavored soft drink called Oranj by combining orange soda
and orange juice. Each ounce of orange soda contains 0.5 oz of sugar and 1 mg of vita-
min C. Each ounce of orange juice contains 0.25 oz of sugar and 3 mg of vitamin C. It
costs Bevco 2¢ to produce an ounce of orange soda and 3¢ to produce an ounce of or-
ange juice. Bevco’s marketing department has decided that each 10-oz bottle of Oranj
must contain at least 20 mg of vitamin C and at most 4 oz of sugar. Use linear program-
ming to determine how Bevco can meet the marketing department’s requirements at min-
imum cost.

Solution Let

x1 " number of ounces of orange soda in a bottle of Oranj

x2 " number of ounces of orange juice in a bottle of Oranj

Then the appropriate LP is

min z " 2x1 # 3x2

s.t. $
1
2

$x1 # $
1
4

$ x2 % 4 (Sugar constraint) (17)

s.t. $
1
2

$x1 # 3x2 ! 20 (Vitamin C constraint)

Group B
3 Show that if ties in the ratio test are broken by favoring
row 1 over row 2, then cycling occurs when the following
LP is solved by the simplex:

max z " 2x1 # 3x2 & x3 & 12x4

s.t &2x1 & 9x2 # x3 # 9x4 % 0
$ $

x
3
1$ # x2 & $

x
3
3$ & 2x4 % 0

xi ! 0 (i " 1, 2, 3, 4)

4 Show that if ties are broken in favor of lower-numbered
rows, then cycling occurs when the simplex method is used
to solve the following LP:

max z " &3x1 # x2 & 6x3

9x1 # x2 & 9x3 & 2x4 % 0
x1 # $

x
3
2$ & 2x3 & $

x
3
4$ % 0

&9x1 & x2 # 9x3 # 2x4 % 1
xi ! 0 (i " 1, 2, 3, 4)
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5 Show that if Bland’s Rule to prevent cycling is applied
to Problem 4, then cycling does not occur.

6 Consider an LP (maximization problem) in which each
basic feasible solution is nondegenerate. Suppose that xi is
the only variable in our current tableau having a negative
coefficient in row 0. Show that any optimal solution to the
LP must have xi ' 0.



s.t. $
1
2

$x1 # x2 " 10 (10 oz in bottle of Oranj)

x1, x2 ! 0

(The solution will be continued later in this section.)

To put (17) into standard form, we add a slack variable s1 to the sugar constraint and
subtract an excess variable e2 from the vitamin C constraint. After writing the objective
function as z & 2x1 & 3x2 " 0, we obtain the following standard form:

Row 0: z & 2x1 & 3x2 # s1 & e2 " 0

Row 1: z & $
1
2

$x1 # $
1
4

$x2 # s1 & e2 " 4

Row 2: z & x1 # 3x2 # s1 & e2 " 20
(18)

Row 3: z & x1 # x2 # s1 & e2 " 10

All variables nonnegative

In searching for a bfs, we see that s1 " 4 could be used as a basic (and feasible) variable
for row 1. If we multiply row 2 by &1, we see that e2 " &20 could be used as a basic
variable for row 2. Unfortunately, e2 " &20 violates the sign restriction e2 ! 0. Finally,
in row 3 there is no readily apparent basic variable. Thus, in order to use the simplex to
solve (17), rows 2 and 3 each need a basic (and feasible) variable. To remedy this prob-
lem, we simply “invent” a basic feasible variable for each constraint that needs one. Be-
cause these variables are created by us and are not real variables, we call them artificial
variables. If an artificial variable is added to row i, we label it ai. In the current problem,
we need to add an artificial variable a2 to row 2 and an artificial variable a3 to row 3. The
resulting set of equations is

z & 2x1 & 3x2 # s1 & e2 # a2 # a2 " 0

z & $
1
2

$x1 # $
1
4

$x2 # s1 & e2 # a2 # a2 " 4
(18)

z & x1 # 3x2 # s1 & e2 # a2 # a2 " 20

z & x1 # x2 # s1 & e2 # a2 # a3 " 10

We now have a bfs: z " 0, s1 " 4, a2 " 20, a3 " 10. Unfortunately, there is no guaran-
tee that the optimal solution to (18) will be the same as the optimal solution to (17). In
solving (18), we might obtain an optimal solution in which one or more artificial variables
are positive. Such a solution may not be feasible in the original problem (17). For exam-
ple, in solving (18), the optimal solution may easily be shown to be z " 0, s1 " 4, a2 "
20, a3 " 10, x1 " x2 " 0. This “solution” contains no vitamin C and puts 0 ounces of soda
in a bottle, so it cannot possibly solve our original problem! If the optimal solution to (18)
is to solve (17), then we must make sure that the optimal solution to (18) sets all artificial
variables equal to zero. In a min problem, we can ensure that all the artificial variables will
be zero by adding a term Mai to the objective function for each artificial variable ai. (In a
max problem, add a term &Mai to the objective function.) Here M represents a “very large”
positive number. Thus, in (18), we would change our objective function to

min z " 2x1 # 3x2 # Ma2 # Ma3

Then row 0 will change to

z & 2x1 & 3x2 & Ma2 & Ma3 " 0

Modifying the objective function in this way makes it extremely costly for an artificial
variable to be positive. With this modified objective function, it seems reasonable that the
optimal solution to (18) will have a2 " a3 " 0. In this case, the optimal solution to (18)
will solve the original problem (17). It sometimes happens, however, that in solving the
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analog of (18), some of the artificial variables may assume positive values in the optimal
solution. If this occurs, the original problem has no feasible solution.

For obvious reasons, the method we have just outlined is often called the Big M
method. We now give a formal description of the Big M method.

Description of Big M Method

Step 1 Modify the constraints so that the right-hand side of each constraint is non-
negative. This requires that each constraint with a negative right-hand side be multiplied
through by &1. Remember that if you multiply an inequality by any negative number, the
direction of the inequality is reversed. For example, our method would transform the in-
equality x1 # x2 ! &1 into &x1 & x2 % 1. It would also transform x1 & x2 % &2 into
&x1 # x2 ! 2.

Step 1( Identify each constraint that is now (after step 1) an " or ! constraint. In step
3, we will add an artificial variable to each of these constraints.

Step 2 Convert each inequality constraint to standard form. This means that if constraint
i is a % constraint, we add a slack variable si, and if constraint i is a ! constraint, we sub-
tract an excess variable ei.

Step 3 If (after step 1 has been completed) constraint i is a ! or " constraint, add an
artificial variable ai. Also add the sign restriction ai ! 0.

Step 4 Let M denote a very large positive number. If the LP is a min problem, add (for
each artificial variable) Mai to the objective function. If the LP is a max problem, add (for
each artificial variable) &Mai to the objective function.

Step 5 Because each artificial variable will be in the starting basis, all artificial variables
must be eliminated from row 0 before beginning the simplex. This ensures that we begin
with a canonical form. In choosing the entering variable, remember that M is a very large
positive number. For example, 4M & 2 is more positive than 3M # 900, and &6M & 5
is more negative than &5M & 40. Now solve the transformed problem by the simplex. If
all artificial variables are equal to zero in the optimal solution, then we have found the
optimal solution to the original problem. If any artificial variables are positive in the op-
timal solution, then the original problem is infeasible.†

When an artificial variable leaves the basis, its column may be dropped from future
tableaus because the purpose of an artificial variable is only to get a starting basic feasi-
ble solution. Once an artificial variable leaves the basis, we no longer need it. Despite this
fact, we often maintain the artificial variables in all tableaus. The reason for this will be-
come apparent in Section 6.7.

Solution Example 4 (Continued)

Step 1 Because none of the constraints has a negative right-hand side, we don’t have to
multiply any constraint through by &1.
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†We have ignored the possibility that when the LP (with the artificial variables) is solved, the final tableau
may indicate that the LP is unbounded. If the final tableau indicates the LP is unbounded and all artificial
variables in this tableau equal zero, then the original LP is unbounded. If the final tableau indicates that the
LP is unbounded and at least one artificial variable is positive, then the original LP is infeasible. See Bazaraa
and Jarvis (1990) for details.



Step 1( Constraints 2 and 3 will require artificial variables.

Step 2 Add a slack variable s1 to row 1 and subtract an excess variable e2 from row 2.
The result is

min z " 2x1 # 3x2

Row 1: $
1
2

$x1 # $
1
4

$x2 # s1 & e2 " 4

Row 2: $
1
2

$x1 # 3x2 # s1 & e2 " 20

Row 3: $
1
2

$x1 # x2 # s1 & e2 " 10

Step 3 Add an artificial variable a2 to row 2 and an artificial variable a3 to row 3. The
result is

min z " 2x1 # 3x2

Row 1: $
1
2

$x1 # $
1
4

$ x2 # s1 & e2 # a2 # a3 " 4

Row 2: $
1
2

$x1 # 3x2 # s1 & e2 # a2 # a3 " 20

Row 3: $
1
2

$x1 # x2 # s1 & e2 # a2 # a3 " 10

From this tableau, we see that our initial bfs will be s1 " 4, a2 " 20, and a3 " 10.

Step 4 Because we are solving a min problem, we add Ma2 # Ma3 to the objective func-
tion (if we were solving a max problem, we would add &Ma2 & Ma3). This makes a2 and
a3 very unattractive, and the act of minimizing z will cause a2 and a3 to be zero. The ob-
jective function is now

min z " 2x1 # 3x2 # Ma2 # Ma3

Step 5 Row 0 is now

z & 2x1 & 3x2 & Ma2 & Ma3 " 0

Because a2 and a3 are in our starting bfs (that’s why we introduced them), they must be
eliminated from row 0. To eliminate a2 and a3 from row 0, simply replace row 0 by row
0 # M(row 2) # M(row 3). This yields

Row 0: z & 2x1 & 3x2 & Ma2 & Ma3 " 0

M(row 2): Mx1 # 3Mx2 & Me2 # Ma2 & Ma3 " 20M

M(row 3): Mx1 # Mx2 # Ma3 " 10M

New row 0: z # (2M & 2)x1 # (4M & 3)x2 & Me2 &Ma2 & Ma3 " 30M

Combining the new row 0 with rows 1–3 yields the initial tableau shown in Table 33.
We are solving a min problem, so the variable with the most positive coefficient in row

0 should enter the basis. Because 4M & 3 ' 2M & 2, variable x2 should enter the basis.
The ratio test indicates that x2 should enter the basis in row 2, which means the artificial
variable a2 will leave the basis. The most difficult part of doing the pivot is eliminating
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TA B L E  33
Initial Tableau for Bevco

Basic
z x1 x2 s1 e2 a2 a3 rhs Variable Ratio

1 2M & 2 4M & 3 0 &M 0 0 30M z2 " 30M
0 $

1
2

$ $
1
4

$ 1 0 0 0 4 s1 " 4 16
0 1 3 0 &1 1 0 20 a2 " 20 $

2
3
0
$*

0 1 1 0 0 0 1 10 a3 " 10 10



x2 from row 0. First, replace row 2 by $
1
3

$(row 2). Thus, the new row 2 is

$
1
3

$x1 # x2 & $
1
3

$e2 # $
1
3

$a2 " $
2
3
0
$

We can now eliminate x2 from row 0 by adding &(4M & 3)(new row 2) to row 0 or
(3 & 4M)(new row 2) # row 0. Now

(3 & 4M)(new row 2) "

$
(3 &

3
4M)x1$ # (3 & 4M)x2 & $

(3 &
3
4M)e2$ # $

(3 &
3
4M)a2$ " $

20(3 &
3

4M)
$

Row 0: z # (2M & 2)x1 # (4M & 3)x2 & Me2 " 30M

New row 0: z # $
(2M &

3
3)x1$ # $

(M &
3

3)e2$ # $
(3 &

3
4M)a2$ " $

60 #
3

10M
$

After using EROs to eliminate x2 from row 1 and row 3, we obtain the tableau in Table
34. Because $2M

3
&3
$ ' $

M&
3

3
$, we next enter x1 into the basis. The ratio test indicates that x1

should enter the basis in the third row of the current tableau. Then a3 will leave the ba-
sis, and our next tableau will have a2 " a3 " 0. To enter x1 into the basis in row 3, we
first replace row 3 by $

3
2

$(row 3). Thus, new row 3 will be

x1 # $
e
2
2$ & $

a
2
2$ # $

3
2
a3$ " 5

To eliminate x1 from row 0, we replace row 0 by row 0 # (3 & 2M)(new row 3)/3.

Row 0: z # $
(2M &

3
3)x1$ # $

(M &
3

3)e2$ # $
(3 &

3
4M)a2$ " $

60 #
3

10M
$

: $
(3 &

3
2M)x1$ # $

(3 &
6
2M)e2$ # $

(2M &
6

3)a2$

# $
(3 &

2
2M)a3$ " $

15 &
3

10M
$

New row 0: z & $
e
2
2$ # $

(1 &
2
2M)a2$ # $

(3 &
2
2M)a3$ " 25

New row 1 and new row 2 are computed as usual, yielding the tableau in Table 35. Be-
cause all variables in row 0 have nonpositive coefficients, this is an optimal tableau; all
artificial variables are equal to zero in this tableau, so we have found the optimal solution
to the Bevco problem: z " 25, x1 " x2 " 5, s1 " $

1
4

$, e2 " 0. This means that Bevco can
hold the cost of producing a 10-oz bottle of Oranj to 25¢ by mixing 5 oz of orange soda
and 5 oz of orange juice. Note that the a2 column could have been dropped after a2 left
the basis (at the conclusion of the first pivot), and the a3 column could have been dropped
after a3 left the basis (at the conclusion of the second pivot).

(3 & 2M)(new row 3)
$$$

3
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TA B L E  34
First Tableau for Bevco

Basic
z x1 x2 s1 e2 a2 a3 rhs Variable Ratio

1 $
2M

3
&3
$ 0 0 $

M&
3

3
$ $

3&
3
4M
$ 0 $

60#
3
10M
$ z2 " $

60#
3
10M
$

0 $
1
5
2
$ 0 1 $

1
1
2
$ &$

1
1
2
$ 0 $

7
3

$ s1 " $
7
3

$ $
2
5
8
$

0 $
1
3

$ 1 0 &$
1
3

$ &$
1
3

$ 0 $
2
3
0
$ x2 " $

2
3
0
$ 20*

0 $
2
3

$ 0 0 &$
1
3

$ &$
1
3

$ 1 $
1
3
0
$ a3 " $

1
3
0
$ 25*



How to Spot an Infeasible LP

We now modify the Bevco problem by requiring that a 10-oz bottle of Oranj contain at
least 36 mg of vitamin C. Even 10 oz of orange juice contain only 3(10) " 30 mg of vi-
tamin C, so we know that Bevco cannot possibly meet the new vitamin C requirement.
This means that Bevco’s LP should now have no feasible solution. Let’s see how the Big
M method reveals the LP’s infeasibility. We have changed Bevco’s LP to

min z " 2x1 # 3x2

s.t. $
1
2

$x1 # $
1
4

$x2 % 4 (Sugar constraint)

s.t. $
1
2

$x1 # 3x2 ! 36 (Vitamin C constraint) (19)

s.t. $
1
2

$x1 # x2 " 10 (10 oz constraint)

x1, x2 ! 0

After going through Steps 1–5 of the Big M method, we obtain the initial tableau in Table
36. Because 4M & 3 ' 2M & 2, we enter x2 into the basis. The ratio test indicates that
x2 should be entered in row 3, causing a3 to leave the basis. After entering x2 into the ba-
sis, we obtain the tableau in Table 37. Because each variable has a nonpositive coefficient
in row 0, this is an optimal tableau. The optimal solution indicated by this tableau is z "
30 # 6M, s1 " $

3
2

$, a2 " 6, x2 " 10, a3 " e2 " x1 " 0. An artificial variable (a2) is 
positive in the optimal tableau, so Step 5 shows that the original LP has no feasible so-
lution.† In summary, if any artificial variable is positive in the optimal Big M tableau,
then the original LP has no feasible solution.
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TA B L E  35
Optimal Tableau for Bevco

Basic
z x1 x2 s1 e2 a2 a3 rhs Variable

1 0 0 0 &$
1
2

$ $
1&

2
2M
$ $

3&
2
2M
$ 25 z2 " 25

0 0 0 1 &$
1
8

$ $
1
8

$ &$
5
8

$ $
1
4

$ s1 " $
1
4

$

0 0 1 0 &$
1
2

$ $
1
2

$ &$
1
2

$ 5 x2 " 5

0 1 0 0 &$
1
2

$ &$
1
2

$ $
3
2

$ 5 x1 " 5

†To explain why (19) can have no feasible solution, suppose that it does (x!1, x!2). Clearly, if we set a3 " a2 "
0, (x!1, x!2) will be feasible for our modified LP (the LP with artificial variables). If we substitute (x!1, x!2) into
the modified objective function (z " 2x!1 # 3x!2 # Ma2 # Ma3), we obtain z " 2x!1 # 3x!2 (this follows be-
cause a3 " a2 " 0). Because M is large, this z-value is certainly less than 6M # 30. This contradicts the fact
that the best z-value for our modified objective function is 6M # 30. This means that our original LP (19)
must have no feasible solution.

TA B L E  36
Initial Tableau for Bevco (Infeasible)

Basic
z x1 x2 s1 e2 a2 a3 rhs Variable Ratio

1 2M & 2 4M & 3 0 &M 0 0 46M z2 " 46M
0 $

1
2

$ $
1
4

$ 1 0 0 0 4 s1 " 4 16
0 1 3 0 &1 1 0 36 a2 " 36 12
0 1 1 0 0 0 1 10 a3 " 10 10*



Note that when the Big M method is used, it is difficult to determine how large M should
be. Generally, M is chosen to be at least 100 times larger than the largest coefficient in the
original objective function. The introduction of such large numbers into the problem can
cause roundoff errors and other computational difficulties. For this reason, most computer
codes solve LPs by using the two-phase simplex method (described in Section 4.13).

P R O B L E M S
Group A
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TA B L E  37
Tableau Indicating Infeasibility for Bevco (Infeasible)

Basic
z x1 s2 s1 e2 a2 a3 rhs Variable

1 1 & 2M 0 0 &M 0 3 & 4M 30 # 6M z2 " 6M # 30
0 &$

1
4

$ 0 1 0 0 &$
1
4

$ $
3
2

$ s1 " $
3
2

$

0 &2 0 0 &1 1 &3 6 a2 " 6
0 &1 1 0 0 0 1 10 x2 " 10

Use the Big M method to solve the following LPs:

1 min z " 4x1 # 4x2 # x3

s.t. 2x1 # x2 # 3x3 % 2
2x1 # x2 % 3
2x1 # x2 # 3x3 ! 3

x1, x2, x3 ! 0

2 min z " 2x1 # 3x2

s.t. 2x1 # x2 ! 4&

s.t. x1 & x2 ! &1
x1, x2 ! 0

3 max z " 3x1 # x2

s.t. x1 # x2 ! 3
2x1 # x2 % 4
x1 # x2 " 3

x1, x2 ! 0

4 min z " 3x1

s.t. 2x1 # 2x2 ! 6
3x1 # 2x2 " 4

x1, x2 ! 0

5 min z " x1 # x2

s.t. 2x1 # x2 # 2x3 " 4
x1 # x2 # 2x3 " 2

x1, x2, x3 ! 0

6 min z " x1 # x2

s.t. x1 # 2x2 " 2
2x1 # 2x2 " 4

x1, x2 ! 0

4.13 The Two-Phase Simplex Method†

When a basic feasible solution is not readily available, the two-phase simplex method may
be used as an alternative to the Big M method. In the two-phase simplex method, we add ar-
tificial variables to the same constraints as we did in the Big M method. Then we find a bfs
to the original LP by solving the Phase I LP. In the Phase I LP, the objective function is to
minimize the sum of all artificial variables. At the completion of Phase I, we reintroduce the
original LP’s objective function and determine the optimal solution to the original LP.

The following steps describe the two-phase simplex method. Note that steps 1–3 for
the two-phase simplex are identical to steps 1–3 for the Big M method.

†This section covers topics that may be omitted with no loss of continuity.


