Métodos de Apoio à Decisão Algoritmo do Simplex (método do *Big M*)

João Pedro Pedroso

2024/2025

- Aulas passadas:
 - resolução gráfica de problemas lineares de otimização
 - introdução ao algoritmo do simplex

Algoritmo do simplex: descrição geral

- Converter o problema à forma standard.
- Determinar uma solução básica admissível (SBA).
- 3 Verificar se a SBA é ótima; se sim, STOP.
- Se não, passar para outra SBA, adjacente à anterior mas com um melhor objetivo, utilizando operações algébricas elementares.
- Omeçar uma nova iteração (passo 3).

Casos especiais da programação linear: quadro do simplex

• Caso de soluções óptimas múltiplas:

- há uma variável não básica com coeficiente 0 na linha 0 do quadro óptimo
- essa variável pode entrar na base (saindo outra) sem que o objectivo seja alterado

• Caso de problemas ilimitados:

- num passo do algoritmo há uma variável não básica que pode ser aumentada (de zero para um valor positivo)
- quando essa variável entra na base, não há nenhuma restrição que a limite
- em problemas de maximização: uma variável tem coeficiente negativo na linha 0, e coeficientes não positivos em todas as restrições

Aula de hoje

• Algoritmo do simplex para problemas de minimização

Algoritmo do simplex para problemas de minimização

Para minimizar:

Método 1 Modificar o objectivo:

minimizar
$$z=c_1x_1+c_2x_2+\ldots+c_nx_n$$
 \longrightarrow maximizar $-z=-c_1x_1-c_2x_2+\ldots-c_nx_n$

Método 2 Modificar o passo 3 do algoritmo:

Passo 3 Todas as variáveis não-básicas têm coeficientes ≤ 0 na linha 0?

- se sim, então a solução é óptima.
- se não: escolher a variável que tem o coeficiente mais positivo para entrar na base (heurística).

Algoritmo do simplex: método do big M

Quando não se consegue inferir directamente uma solução básica admissível, tem de se utilizar uma etapa inicial para a determinar.

- Modificar as restrições por forma a que todos os termos independentes sejam não negativos.
 Identificar todas as restrições do tipo = ou >.
- Converter desigualdades para a forma standard.
- Adicionar uma variável artificial ai por cada restrição i que inicialmente era ≥ ou =.
- Seja *M* um valor positivo muito elevado
 - Minimização: novo objectivo $z' = z + Ma_i$
 - Maximização: novo objectivo $z' = z Ma_i$
- Resolver o problema transformado pelo método do simplex.

- Nada nos garante que a solução óptima deste problema seja a solução óptima do problema original...
- Mas caso na solução óptima todas as variáveis ai sejam nulas, a solução é válida (e ótima) para o problema original
- se alguma variável ai for diferente de zero no quadro óptimo, o problema original é impossível

Exemplo

Uma companhia fabrica uma bebida vitaminada com base em sumo de laranja e num extracto artificial. Cada centilitro do extracto artificial contém 0.5 cl de melaço e 1 mg de vitamina C. Cada centilitro de sumo contem 0.25 cl de melaço e 3 mg de vitamina C. O extracto custa 2 cêntimos/cl, e o sumo 3 cêntimos/cl.

O departamento de marketing decidiu que cada lata de 10 cl deverá ter no máximo 4 cl de melaço e pelo menos 20 mg de vitamina C.

Determinar como é que a empresa poderá satisfazer os requisitos do departamento de marketing ao custo mínimo.

Exemplo

Uma companhia fabrica uma bebida vitaminada com base em sumo de laranja e num extracto artificial. Cada centilitro do extracto artificial contém 0.5 cl de melaço e 1 mg de vitamina C. Cada centilitro de sumo contem 0.25 cl de melaço e 3 mg de vitamina C. O extracto custa 2 cêntimos/cl, e o sumo 3 cêntimos/cl.

O departamento de marketing decidiu que cada lata de 10 cl deverá ter no máximo 4 cl de melaço e pelo menos 20 mg de vitamina C.

Determinar como é que a empresa poderá satisfazer os requisitos do departamento de marketing ao custo mínimo.

minimizar
$$z=2x_1+3x_2$$

sujeito a $1/2x_1+1/4x_2 \le 4$
 $x_1+3x_2 \ge 20$
 $x_1+x_2 = 10$
 $x_1,x_2 \ge 0$

Problema transformado

Forma standard:

• Introdução das variáveis artificiais (linhas 2 e 3); objectivo fica minimizar $z = 2x_1 + 3x_2 + Ma_2 + Ma_3$:

Problema transformado

Para determinarmos a solução básica admissível inicial:

- Variáveis a2 e a3 são básicas
- Temos que as colocar com coeficiente zero na linha (0):
 - somar à linha (0) $M \times$ a linha(2)
 - somar à linha (0) $M \times$ a linha(3)

Quadros do simplex

Queremos que a_2 e a_3 estejam na solução básica admissível (por isso é que as introduzimos!); temos que eliminar os seus coeficientes da linha 0:

	Z	x_1	<i>x</i> ₂	s_1	e_2	<i>a</i> ₂	<i>a</i> ₃	rhs	VB
linha0	1	2 <i>M</i> – 2	4 <i>M</i> – 3	0	-M	0	0	30 <i>M</i>	z = 30M
linha1	0	1/2	1/4	1	0	0	0	4	$s_1 = 4$
linha2	0	1	3	0	-1	1	0	20	$a_2 = 20$
linha3	0	1	1	0	0	0	1	10	$a_3 = 10$

 x_2 entra na base, saindo a_2 :

									VB
linha0	1	$\frac{2M-3}{3}$	0	0	$\frac{M-3}{3}$	3-4M 3	0	60+10 <i>M</i> 3	$z = \frac{60 + 10M}{3}$
linha1	0	5/12	0	1	1/12	-1/12	0	7/3	$s_1 = 7/3$
linha2	0	1/3	1	0	-1/3	1/3	0	20/3	$x_2 = 20/3$
linha3	0	2/3	0	0	1/3	-1/3	1	10/3	$a_3 = 10/3$

 x_1 entra na base, saindo a_3 :

	Z	<i>x</i> ₁	<i>X</i> ₂	<i>s</i> ₁	e_2	a_2	<i>a</i> ₃	rhs	VB
linha0	1	0	0	0	-1/2	$\frac{1-2M}{2}$	3-2M 2	25	z = 25
linha1	0	0	0	1	-1/8	1/8	$-\bar{5}/8$	1/4	$s_1 = 1/4$
linha2	0	0	1	0	-1/2	1/2	-1/2	5	$x_2 = 5$
linha3	0	1	0	0	1/2	-1/2	3/2	5	$x_1 = 5$

(Este quadro é optimo; qualquer das variáveis não básicas piora o objectivo se entrar na base.)

Análise de sensibilidade: intuição gráfica

Análise de sensibilidade: intuição gráfica

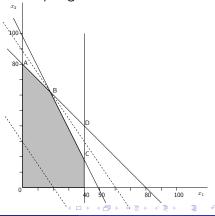
- Retomemos um problema apresentado há algumas aulas atrás:
 - fabrico de mesas (x_1) e de cadeiras (x_2)
 - lucro: 3€/mesa, 2€/mesa
 - recursos: 100 horas de acabamentos, 80 horas de carpintaria
 - vendas de mesas inferiores a 40 unidades.

Resolução gráfica:

Formulação em programação linear

maximizar
$$z=3x_1+2x_2$$

sujeito a : $2x_1+x_2 \leq 100$
 $x_1+x_2 \leq 80$
 $x_1 \leq 40$
 $x_1,x_2>0$

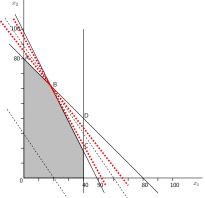


Modificações nos coeficientes da função objectivo

Se a contribuição para o lucro de cada mesa aumentar suficientemente, no óptimo iremos produzir mais mesas.

- Aumentar o coeficiente de x₁ ou diminuir o de x₂ ⇒ aumenta o incentivo para produzir mesas (x₁);
- Aumentar o coeficiente de x₂ ou diminuir o de x₁ ⇒ aumenta o incentivo para produzir cadeiras (x₂);

Questão: para que valores de c_1 é que a solução se mantém óptima?



Modificações nos coeficientes da função objectivo

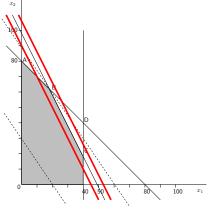
- Linha de isocusto: $z = 3x_1 + 2x_2 = constante$
- Colocando x_2 em função de x_1 : $x_2 = -3/2x_1 + constante'$
- Se a recta de isolucro ficar mais inclinada do que BC \Rightarrow ponto óptimo passa para C
- Se a recta de isolucro ficar menos inclinada do que AB ⇒ ponto óptimo passa para A
- O ponto óptimo mantém-se em B (mas com lucro diferente) para $2 \le c_1 \le 4$
- De uma forma geral: $z=c_1x_1+c_2x_2\Rightarrow x_2=-c_1/c_2x_1+$ constante
 - este declive deverá ser comparado com o das restrições activas.

Modificações num termo independente

Se alterarmos a quantitidade de um recurso, como se modificará a solução óptima?

- A restrição correspondente é deslocada paralelamente;
- Variações superiores a certos valores implicam alteração do ponto óptimo:
 - restrições activas deixam de o ser
 - vice-versa

Questão: para que valores de b_i é que a base da solução se mantém óptima?



Modificações num termo independente

- Restrição (1): $2x_1 + x_2 \le 100$
- ullet Para que valores de b_1 é que a base da solução actual se mantém óptima? Seja $b_1=100+\Delta$

$$\begin{cases} 2x_1 + x_2 = 100 + \Delta \\ x_1 + x_2 = 80 \end{cases} \Leftrightarrow \begin{cases} x_1 = 20 + \Delta \\ x_2 = 60 - \Delta \end{cases}$$

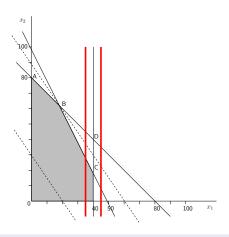
- Aumentando b₁ diminui o número de cadeiras e aumenta o número de mesas produzidas na solução óptima.
- Variação no valor do objectivo:

$$z' = 3x_1 + 2x_2 = 3(20 + \Delta) + 2(60 - \Delta) = 180 + \Delta$$

- Preço sombra da restrição i: quantidade em que z^* melhora se se aumentar b_i em 1
 - neste caso: preço sombra = coeficiente de $\Delta = 1$.

Modificações num termo independente

- Restrição (3): $x_1 \le 40$; seja $b_3 = 40 + \Delta$
- Ponto óptimo não é alterado para $\Delta \geq -20$
- Preço sombra é nulo.
- Variável de desvio s_i > 0 ⇒ preço sombra associado à restrição i é nulo.



Estudaremos nas próximas aulas estas propriedades no contexto da dualidade.

Noções estudadas

- Variáveis artificiais
- Método do Big M
- Quadros do simplex nos casos especiais em otimização linear
 - problemas impossíveis
 - \bullet usando o método do Big M \to variável artificial com valor positivo na solução ótima
 - problemas ilimitados: objetivo pode melhorar indefinidamente
 - entra uma variável na base
 - nenhuma restrição a impede de ter valores arbitrariamente altos
 - solução única
 - na solução ótima não há variáveis = 0 com custo reduzido = 0
 - soluções múltiplas
 - ullet na solução ótima há variáveis iguais a zero com custo reduzido =0
 - se uma dessas variáveis entrar na base, o objetivo não se altera
- Programação linear: análise de sensibilidade, interpretação económica.

Próxima aula

• Dualidade em programação linear.