Métodos de Apoio à Decisão Problemas de Gestão de Projetos

João Pedro Pedroso

2024/2025

Aula passada: Noções estudadas

- Propriedades da dualidade em otimização linear
- Problemas de gestão de projetos: CPM
 - caminho crítico, atividade crítica
 - formulação em programação matemática

Hoje:

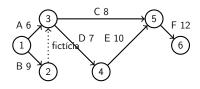
- gestão de projetos: PERT
- simulação

Casos especiais em otimização linear

Simplex: como determinar o tipo de solução:

- problemas impossíveis
 - ullet usando o método do Big M o variável artificial com valor positivo na solução ótima
- problemas ilimitados: objetivo pode assumir valores arbitrariamente bons
 - entra uma variável na base, sem que nenhuma das restrições a "impeça" de ter valores arbitrariamente altos
- solução única
 - na solução ótima não há variáveis iguais a zero com custo reduzido igual a zero
- soluções múltiplas
 - na solução ótima há variáveis iguais a zero com custo reduzido também igual a zero
 - se uma dessas variáveis entrar na base, o objetivo não se altera
 - esta é a situação mais habitual

Rede de atividades



- Nó 1 representa o começo do projeto
 - ullet atividades que não têm precedentes partem do nó 1
- 2 Nó terminal: representa a conclusão do projeto
- Nós numerados de forma crescente para cada arco
- Cada atividade corresponde exatamente a um arco
- Dois nós podem estar ligados por um arco, no máximo
 - se necessário, criar atividades fictícia
- Utilizam-se apenas os precedentes diretos de cada atividade

Problemas de gestão de projetos

Modelos mais utilizados:

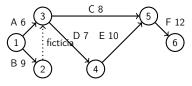
- CPM: critical path method
 - duração de cada atividade é conhecida com certeza
 - duração crítica: duração mínima do projeto
 - atividades críticas: não têm folga
 - ightarrow se se atrasarem, a conclusão do projeto também se atrasa
- PERT: program evaluation and review technique
 - duração das atividades tem uma componente estocástica
 - estima probabilidade de o projeto ser concluído num determinado prazo

Esmagar um projeto

- Por vezes tem que se concluir um projeto num tempo menor do que a duração crítica
- Nesse caso, tem de se utilizar recursos adicionais
 - mais trabalhadores a construir uma casa
 - computadores mais rápidos para fazer cálculos
 - transporte em avião em vez de navio
- Pretende-se minimizar o dispêndio nesses recursos
 - mas assegurando a conclusão no tempo desejado

Exemplo

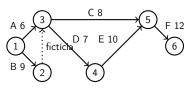
 No projeto anterior, para colocar o produto no mercado antes da concorrência a companhia de software deverá ter o produto final pronto dentro de 25 dias.



 Estima-se que a duração de cada atividade poderá ser reduzida até 5 dias, com os seguintes custos adicionais (por cada dia que se reduz):

• Chamando RA, RB, ...à redução na duração de A, B, ..., teremos:

Exemplo (continuação)



minimize
$$10RA + 20RB + 3RC + 30RD + 40RE + 50RF$$
 subject to $x_6 - x_1 \le 25$ $x_3 \ge x_1 + 6 - RA$ $x_2 \ge x_1 + 9 - RB$ $x_3 \ge x_2$ $x_5 \ge x_3 + 8 - RC$ $x_4 \ge x_3 + 7 - RD$ $x_5 \ge x_4 + 10 - RE$ $x_6 \ge x_5 + 12 - RF$ $x_i \ge 0, \forall i$ $0 < RA, RB, \ldots < 5$

PERT

PERT

Program Evaluation and Review Technique

- Em muitas situações não se conhece a duração das atividades de forma determinística (pressuposto do CPM).
- PERT corrige esta lacuna: a duração da cada atividade é modelada como uma variável aleatória, com três parâmetros:
 - m, o valor mais provável da duração
 - a, estimativa mais favorável para a duração
 - Ø b, estimativa mais pessimista para a duração
- T_{ij} , a duração da atividade (i, j), é uma variável aleatória
- Assume-se que tem uma distribuição beta:
 - **1** média: $E[T_{ij}] = \frac{a+4m+b}{6}$
 - 2 variância $(T_{ij}) = \frac{(b-a)^2}{36}$
 - admite-se que a duração de cada atividade é independente da duração das outras

Caraterização de um caminho

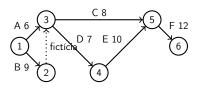
- Duração esperada das atividades de um caminho $= \sum_{(i,j) \in \text{caminho}} E[T_{ij}]$
- Variância da duração das atividades no caminho $= \sum_{(i,j) \in \mathsf{caminho}} \mathsf{var}(T_{ij})$
- ullet DT ightarrow duração total das atividades no caminho crítico
 - (determinado pelo CPM)
 - ullet DT o variável aleatória
- Admite-se que o número de atividades é suficientemente grande para se poder aplicar o teorema do limite central:

$$DT = \sum_{(i,j) \in \mathsf{caminho} \ \mathsf{crítico}} T_{ij}$$

tem distribuição normal

Exemplo

Atividade	а	b	m	Atividade	$E[T_{ij}]$	$var(T_{ij})$
		~		(1,2)	9	1.78
(1,2)	5	13	9	(1,3)	6	1.78
(1,3)	2	10	6	` ,	•	
(3,5)	3	13	8	(3,5)	8	2.78
(' /	1	13	7	(3,4)	7	4.00
(3,4)	1		1	(4,5)	10	0.44
(4,5)	8	12	10	` ,	12	1.00
(5,6)	9	15	12	(5,6)	12	1.00
(-,0)	,			(2,3)	0	0



Exemplo (continuação)

- Seja DT a duração do caminho crítico (variável aleatória).
- E[DT] = 9 + 0 + 7 + 10 + 12 = 38
- var(DT) = 1.78 + 0 + 4 + 0.44 + 1 = 7.22
- o desvio padrão é $\sqrt{7.22} = 2.69$
- Qual é a probabilidade de o projeto ser concluído em 35 semanas?

$$P(DT \le 35) = P(\frac{DT - 38}{2.69} \le \frac{35 - 38}{2.69}) = P(z \le -1.12) = 0.13$$

(última igualdade: tabela da distribuição normal)

Probabilidade acumulada para a distribuição normal

segundo dígito de z											
\mathbf{z}	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
-3.5	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002	
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003	
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005	
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007	
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010	
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014	
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019	
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026	
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036	
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048	
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064	
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084	
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110	
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143	
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183	
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233	
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294	
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367	
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455	
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559	
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681	
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823	
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985	
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170	
							1 1 1 1 1 1	- N (A)	. VEV.	7 ± 171.7 ±	

Limitações da técnica PERT

- muitas vezes as durações das atividades não são independentes;
- as durações podem não ter distribuição beta;
- pode haver vários caminhos críticos;
- a hipótese de que o caminho crítico é o calculado com as durações médias pode não ser válida;
- uma alternativa a este método é a utilização de simulação de Monte Carlo.

Próxima aula

Simulação