Métodos de Apoio à Decisão Texto de apoio para estudo do método do Simplex

João Pedro PEDROSO

DCC - FCUP

1 Algoritmo do simplex para problemas de maximização

- 1. Converter o problema à forma standard (cada restrição e o objetivo ficam na forma de equação).
- 2. Determinar uma solução básica admissível. Se todas as restrições forem ≤, com termos do lado direito positivos, então cada variável de desvio si pode ser utilizada como variável da base para a linha i; se houver termos do lado direito negativos, ou se houver outro tipo de restrições, então será necessário utilizar outra estratégia.
- 3. Verificar se todas as variáveis não-básicas têm coeficientes não negativos na linha 0.
 - Se sim, então a solução é ótima.
 - Se há variáveis na linha 0 com coeficiente negativo, escolher a que tem o coeficiente mais negativo para entrar na base.
- 4. Determinar o valor máximo da variável que entra na base, por forma a que todas as variáveis da base se mantenham não negativas. Reescrever o problema na forma canónica:
 - pôr a variável que entra na base com coeficiente 1 na linha limitante; a variável da base associada a essa linha sai da base
 - eliminar a variável que entra na base de todas as outras linhas;

(Ao introduzir e retirar uma variável da base por este processo, estamos a passar de uma solução básica admissível para uma outra solução básica admissível, adjacente à anterior mas com um melhor objetivo).

5. Começar uma nova iteração, a partir do passo 3.

2 Exemplo

Uma companhia de mobiliário fabrica secretárias, mesas, e cadeiras. O fabrico de cada tipo de móvel requer madeira e dois tipos de trabalho especializado: acabamentos e carpintaria. A quantidade de cada destes recursos necessárias para o fabrico de cada móvel são as seguintes:

Recurso	Secretárias	Mesas	Cadeiras
madeira	8 tábuas	6 tábuas	1 tábuas
acabamentos	4 horas	2 horas	1.5 horas
carpintaria	2 horas	1.5 horas	0.5 horas

Dispõe-se de 48 tábuas, 20 horas de acabamentos, e 8 horas de carpintaria. O preço de venda é de 60 euros para secretárias, 30 euros para mesas, e 20 euros para cadeiras. Admite-se que as vendas de secretárias e de cadeiras são ilimitadas, mas que não se consegue vender mais de 5 mesas.

Como todos os recursos foram já comprados, pretende-se estabelecer o plano de produção que maximiza a receita.

3 Formulação

$$\begin{array}{lll} \text{maximizar } z = & 60x_1 + 30x_2 + 20x_3 \\ \text{sujeito a} & 8x_1 + 6x_2 + x_3 & \leq 48 \\ & 4x_1 + 2x_2 + 1.5x_3 & \leq 20 \\ & 2x_1 + 1.5x_2 + 0.5x_3 & \leq 8 \\ & x_2 & \leq 5 \\ & x_1, x_2, x_3 & \geq 0 \end{array}$$

Forma standard (introdução de variáveis de desvio):

4 Resolução pelo algoritmo do simplex

Ao executar o algoritmo do simplex, escreve-se a função objetivo como $z - c_1x_1 - c_2x_2 - \ldots - c_nx_n = 0$. Chama-se a esta equação a forma *linha zero* da função objetivo.

Um sistema de equações lineares em que cada equação tem uma variável com coeficiente igual a 1 nessa equação, e essa variável tem coeficiente igual a 0 em todas as outras equações, diz-se que está na forma canónica.

Iteração 1 No sistema anterior, por inspecção verifica-se que se se fizer $x_1 = x_2 = x_3 = 0$, se obtém um sistema na forma canónica. Fazemos então o conjunto de variáveis não básicas VNB₁ = $\{x_1, x_2, x_3\}$, e o conjunto de variáveis básicas VB₁ = $\{z, s_1, s_2, s_3, s_4\}$. Como $x_1 = x_2 = x_3 = 0$, pode-se determinar directamente no sistema anterior o valor das variáveis da base: $z = 0, s_1 = 48, s_2 = 20, s_3 = 8, s_4 = 5$.

Forma standard ("quadro simplex" correspondente à formulação anterior):

	z	x_1	x_2	x_3	s_1	s_2	s_3	s_4	rhs	vb
linha 0	1	-60	-30	-20	0	0	0	0	0	z = 0
linha 1	0	8	6	1	1	0	0	0	48	$s_1 = 48$
linha 2	0	4	2	1.5	0	1	0	0	20	$s_2 = 20$
linha 3	0	2	1.5	0.5	0	0	1	0	8	$s_3 = 8$
linha 4	0	0	1	0	0	0	0	1	5	$s_4 = 5$

 $(rhs = right \ hand \ side, \ termo \ do \ lado \ direito \ (termo \ independente); \ vb = valor \ da \ variável \ da \ base associada à linha.)$

Reescrevendo a linha zero como $z=0+60x_1+30x_2+20x_3$, verifica-se que se se aumentar o valor de qualquer das variáveis x_1,x_2,x_3 (que na solução atual são iguais a zero), se aumentará o valor do objetivo; ou seja, a nossa solução básica atual não é ótima. Escolhemos então a variável que tem maior coeficiente nessa equação para entrar na base, e passamos à iteração seguinte.

Iteração 2 Aumentando o valor da variável x_1 aumentamos o valor do objetivo; mas não podemos aumentar indefinidamente essa variável mantendo a solução admissível. Para que a solução se mantenha admissível, todas as variáveis deverão permanecer não negativas. Nesta solução, vemos que:

```
linha 1: s_1 = 48 - 8x_1 \to x_1 \le 6 para manter s_1 \ge 0
linha 2: s_2 = 20 - 4x_1 \to x_1 \le 5 para manter s_2 \ge 0
linha 3: s_3 = 8 - 2x_1 \to x_1 \le 4 para manter s_3 \ge 0
linha 4: s_4 = 5 (independente de x_1)
```

O valor máximo que podemos dar a x_1 é 4, e a linha limitante é a linha 3; a variável associada a esta linha (s_3) irá sair da base. Fazendo o coeficiente de x_1 igual a 1 na linha 3, e eliminando a variável x_1 nas outras equações, obtemos o quadro do simplex seguinte.

$$VB_2 = \{z, s_1, s_2, x_1, s_4\}, VNB_2 = \{s_3, x_2, x_3\}$$

	z	x_1	x_2	x_3	s_1	s_2	s_3	s_4	rhs	vb
linha 0	1	0	15	-5	0	0	30	0	240	z = 240
linha 1	0	0	0	-1	1	0	-4	0	16	$s_1 = 16$
linha 2	0	0	-1	0.5	0	1	-2	0	4	$s_2 = 4$
linha 3	0	1	0.75	0.25	0	0	0.5	0	4	$x_1 = 4$
linha 4	0	0	1	0	0	0	0	1	5	$s_4 = 5$

Iteração 3 Aumentando x_3 aumentanos o valor do objetivo; essa variável vai entrar na base.

```
linha 1: s_1 = 16 + x_3 x_3 não restringido linha 2: s_2 = 4 - 0.5x_3 \rightarrow x_3 \le 8 para manter s_2 \ge 0 linha 3: x_1 = 4 - 0.25x_3 \rightarrow x_3 \le 16 para manter x_1 \ge 0 linha 4: s_4 = 5 (independente de x_1)
```

Linha limitante: linha $2 \Rightarrow s_2$ sai da base.

$$VB_3 = \{z, s_1, x_3, x_1, s_4\}, VNB_3 = \{s_3, x_2, s_2\}$$

	z	x_1	x_2	x_3	s_1	s_2	s_3	s_4	rhs	vb
										z = 280
linha 1	0	0	-2	0	1	2	-8	0	24	$s_1 = 24$
										$x_3 = 8$
linha 3	0	1	1.25	0	0	-0.5	1.5	0	2	$x_1 = 2$
${\rm linha}4$	0	0	1	0	0	0	0	1	5	$s_4 = 5$

Reescrevendo a linha zero como $z = 280 - 5x_2 - 10s_2 - 10s_3$, verifica-se que aumentando o valor de qualquer variável que não está na base, o valor de z irá piorar; portanto, a solução atual é ótima.

O plano ótimo de produção para a empresa é, portanto, produzir 2 secretárias, 0 mesas, e 8 cadeiras.

Custos reduzidos Ao coeficiente das variáveis de decisão na linha 0 chama-se custo reduzido no quadro ótimo. O custo reduzido de uma variável (não básica) significa a quantidade em que o objetivo diminuiria se se aumentasse o valor da variável em uma unidade, em relação à solução ótima (se isso não implicar alterações no conjunto das variáveis da base, ou seja, se todas as variáveis básicas continuarem não negativas). Neste exemplo, o custo reduzido de x_2 é 5. Isto significa que se se produzisse uma mesa (em vez da produção ótima de zero), a receita diminuiria em 5 euros. (Verifique que todas as variáveis básicas se mantêm positivas se se fizer $x_2 = 1$.)

Variáveis de desvio O valor de uma variável de desvio na solução ótima é igual à quantidade de recurso da restrição correspondente a essa variável que não é utilizada. Assim, vê-se que todas as horas de carpintaria e acabamentos são utilizadas (porque $s_2 = s_3 = 0$), que há 24 tábuas que não são utilizadas na solução ótima (porque $s_1 = 24$), e que existe procura para 5 mesas adicionais (porque $s_4 = 5$).

5 Algoritmo do simplex: método do big M

1. Modificar as restrições por forma a que todos os termos independentes sejam não negativos. Identificar todas as restrições do tipo = ou \ge .

2. Converter desigualdades à forma standard.

3. Adicionar uma variável artificial a_i por cada restrição i que inicialmente era \geq ou =.

4. Seja M um valor positivo muito elevado

• Minimização: novo objetivo $z' = z + Ma_i$

• Maximização: novo objetivo $z' = z - Ma_i$

5. Resolver o problema transformado pelo método do simplex.

5.1 Exemplo

Uma companhia fabrica uma bebida vitaminada com base em sumo de laranja e num extrato artificial. Cada centilitro do extrato artificial contém 0.5 cl de melaço e 1 mg de vitamina C. Cada centilitro de sumo contem 0.25 cl de melaço e 3 mg de vitamina C. O extrato custa 2 escudos/cl, e o sumo 3 escudos/cl.

O departamento de marketing decidiu que cada lata de 10 cl deverá ter no máximo 4 cl de melaço e pelo menos 20 mg cl vitamina C.

Determinar como é que a empresa poderá satisfazer os requisitos do departamento de marketing ao custo mínimo.

minimizar
$$z = 2x_1 + 3x_2$$

sujeito a $1/2x_1 + 1/4x_2 \le 4$
 $x_1 + 3x_2 \ge 20$
 $x_1 + x_2 = 10$
 $x_1, x_2 \ge 0$

5.2 Quadros simplex

	z	x_1	x_2	s_1	e_2	a_2	a_3	rhs	VB
linha 0	1	2M - 2	4M - 3	0	-M	0	0	30M	z = 30M
linha 1	0	1/2	1/4	1	0	0	0	4	$s_1 = 4$
linha 2	0	1	3	0	-1	1	0	20	$a_2 = 20$
linha 3	0	1	1	0	0	0	1	10	$a_3 = 10$

	z	x_1	x_2	s_1	e_2	a_2	a_3	rhs	VB
linha 0	1	$\frac{2M-3}{3}$	0	0	$\frac{M-3}{3}$	$\frac{3-4M}{3}$	0	$\frac{60+10M}{3}$	$z = \frac{60 + 10M}{3}$
linha 1	0	5/12	0	1	1/12	-1/12	0	7/3	$s_1 = 7/3$
linha 2	0	1/3	1	0	-1/3	1/3	0	20/3	$x_2 = 20/3$
linha 3	0	2/3	0	0	1/3	-1/3	1	10/3	$a_3 = 10/3$

	z	x_1	x_2	s_1	e_2	a_2	a_3	rhs	VB
linha 0	1	0	0	0	-1/2	$\frac{1-2M}{2}$	$\frac{3-2M}{2}$	25	z = 25
linha 1	0	0	0	1	-1/8	1/8	-5/8	1/4	$s_1 = 1/4$
linha 2	0	0	1	0	-1/2	1/2	-1/2	5	$x_2 = 5$
linha 3	0	1	0	0	1/2	-1/2	3/2	5	$x_1 = 5$

Nota: Existem na Internet, nas páginas

http://www.phpsimplex.com/simplex/simplex.htm?l=en

http://campuscgi.princeton.edu/~rvdb/JAVA/pivot/simple.html

http://www.tutor.ms.unimelb.edu.au/simplex_intro/index.html

programas interativos para o cálculo das operações necessárias a cada iteração do simplex.