
ODAC: Hierarchical Clustering of Time Series Data Streams∗

Pedro Pereira Rodrigues† João Gama‡ João Pedro Pedroso§

Abstract

This paper presents a time series whole clustering sys-

tem that incrementally constructs a tree-like hierarchy

of clusters, using a top-down strategy. The Online

Divisive-Agglomerative Clustering (ODAC) system uses a

correlation-based dissimilarity measure between time series

over a data stream and possesses an agglomerative phase

to enhance a dynamic behavior capable of concept drift de-

tection. Main features include splitting and agglomerative

criteria based on the diameters of existing clusters and sup-

ported by a significance level. At each new example, only

the leaves are updated, reducing computation of unneeded

dissimilarities and speeding up the process every time the

structure grows. Experimental results on artificial and real

data suggest competitive performance on clustering time se-

ries and show that the system is equivalent to a batch divi-

sive clustering on stationary time series, being also capable

of dealing with concept drift. With this work, we assure

the possibility and importance of hierarchical incremental

time series whole clustering in the data stream paradigm,

presenting a valuable and usable option.

1 Introduction

In recent real-world applications, data flows continu-
ously from a data stream at high speed, producing ex-
amples over time, usually one at a time. Traditional
models can’t adapt to the high speed arrival of new ex-
amples [2]. This way, algorithms have been developed
that aim to process data in real-time. These algorithms
should be capable of, at each given moment, supply a
compact data description and process each example in
constant time and memory [1]. Among different tech-
niques known in literature, hierarchical models propose
better versatility as they do not require an a priori def-
inition of the number of clusters to find. From these,
divisive methods seem to be the most appropriate to on-
line procedure, building cluster structure in a top-down
strategy. Most of the work in incremental clustering of
data streams has been concentrated on example cluster-

∗Thanks to the Plurianual support attributed to LIACC,
projects RETINAE (PRIME/IDEIA/70/00078) and ALES II
(POSI/EIA/55340/2004).

†LIACC, University of Porto. prodrigues@liacc.up.pt
‡LIACC & FEP, University of Porto. jgama@liacc.up.pt
§LIACC & DCC-FCUP, University of Porto. jpp@ncc.up.pt

ing rather than variable clustering. Moreover, variable
clustering is usually considered a batch offline proce-
dure. Incremental variable clustering isn’t too surveyed
yet, so we may find a lot of possibilities for contributions
in this area of research, studying time series whole clus-
tering, which is meaningful as we do not try to cluster
subsequences of time series [5].
The main objective of this work is to present an incre-
mental system to hierarchically cluster variables, where
each variable is a time series and each new example that
is fed to the system is the value of an observation of all
time series in a particular time step.
In the next section, a review over incremental cluster-
ing analysis for data streams is performed. Section 3
presents the proposed system. In section 4, experimen-
tal evaluation on artificial and real data is presented,
supporting the quality of the system. We finalize the ex-
position with section 5, where concluding remarks and
future work are presented.

2 Related Work

Clustering is usually taken as a batch procedure, stat-
ically defining the structure of objects. Nevertheless,
incremental methods have been developed, which can
cope with data stream analysis. An overview of cluster-
ing analysis can be found in [4]. Hierarchical algorithms
have three major advantages over partitional methods:
a) don’t require user-predefined number of target clus-
ters; b) don’t make any assumptions about data distri-
bution; c) don’t need any explicit representation rather
than a pair-wise dissimilarity matrix. They set their ba-
sis on dissimilarities among elements of the same group,
defining a hierarchy of clusters.
Methods exist to cluster examples over data streams.
Apart from other good examples, COBWEB, Sin-
gle Pass K-Means, BIRCH, CluStream, CURE and
STREAM are well-known incremental methods. Unfor-
tunately, incremental methods to perform clustering on
variables are hard to find. Moreover, with the advent of
data streams, the assumption that examples are gener-
ated at random according to some stationary probabil-
ity distribution is being disregarded, and new methods
are being proposed to deal with changes on the con-
cept of the distribution producing the examples, that
is, concept drift [7].

497



3 Online Divisive-Agglomerative Clustering

The ODAC (Online Divisive-Agglomerative Clustering)
system is a variable clustering algorithm that constructs
a hierarchical tree-shaped structure of clusters using a
top-down strategy. The leaves are the resulting clus-
ters, with a set of variables at each leaf. The union of
the leaves is the complete set of variables. The intersec-
tion of leaves is the empty set. The system encloses an
incremental distance measure and executes procedures
for expansion and aggregation of the tree-based struc-
ture, based on the diameters of the clusters. The main
setting of our system is the monitoring of existing clus-
ters’ diameters. In a divisive hierarchical structure of
clusters, considering stationary data streams, the over-
all intra-cluster dissimilarity should decrease with each
split. For each existing cluster, the system finds the
two variables defining the diameter of that cluster. If
a given heuristic condition is met on this diameter, the
system splits the cluster and assigns each of the cho-
sen variables to one of the new clusters, becoming this
the pivot variable for that cluster. Afterwards, all re-
maining variables on the old cluster are assigned to the
new cluster which has the closest pivot. New leaves start
new statistics, assuming that only forthcoming informa-
tion will be useful to decide whether or not this cluster
should be split. This feature increases the system’s abil-
ity to cope with changing concepts as, later on, a test
is performed such that if the diameters of the children
leaves approach the parent’s diameter, then the previ-
ously taken decision may no longer reflect the structure
of data, so the system re-aggregates the leaves on the
parent node, restarting statistics. The forthcoming sec-
tions describe the inner core of the system.

3.1 Incremental Dissimilarity Measure We use
Pearson’s correlation coefficient between time series
as similarity measure. Deriving from the correlation
between two time series a and b calculated in [6],
the factors used to compute the correlation can be
updated incrementally, achieving an exact incremental
expression for the correlation:

corr(a, b) =
P − AB

n
√

A2 −
A2

n

√

B2 −
B2

n

(3.1)

The sufficient statistics needed to compute the cor-
relation are easily updated at each time step: A =
∑

ai, B =
∑

bi, A2 =
∑

a2

i , B2 =
∑

b2

i , P =
∑

aibi.
In ODAC, the dissimilarity between variables a and b is
given by an appropriate metric, the Rooted Normalized
One-Minus-Correlation given by

rnomc(a, b) =

√

1 − corr(a, b)

2
(3.2)

with range [0, 1]. We consider the cluster’s diameter
to be the highest dissimilarity between two time series
belonging to the same cluster, or the variable variance
in the case of clusters with single variables.

3.2 Growing the Hierarchy The main procedure
of the ODAC system is to grow a tree-shaped structure
that represents the hierarchy of the clusters present
in the data. One problem that usually arises with
this sort of models is the definition of a minimum
number of observations necessary to assure convergence.
A common way of doing this includes a user-defined
parameter; after a leaf has received at least nmin

examples it is considered ready to be tested for splitting.
Another approach is to apply techniques based on the
Hoeffding bound to solve this problem. The Hoeffding
bound has the advantage of being independent of the
probability distribution generating the observations [2],
stating that after n independent observations of a real-
valued random variable r with range R, and with
confidence 1 − δ, the true mean of r is at least r − ε,
where r is the observed mean of the samples and

ε =

√

R2ln(1/δ)

2n
(3.3)

As each leaf is fed with a different number of exam-
ples, each leaf Ck will possess a different value for ε,
designated εk. Let d(a, b) be the heuristic measure
used to choose the pair of time series representing
the diameter (we use real value of the distance mea-
sure), and Dk = {(xi, xj) | xi, xj ∈ Ck, i < j} be
the set of pairs of variables included in a specific
leaf Ck. After seeing n samples at the leaf, let
(x1, y1) ∈ {(x, y) ∈ Dk | d(x, y) ≥ d(a, b), ∀(a, b) ∈ Dk}
be the pair of variables with maximum dissimilar-
ity within the cluster Ck, D′

k = Dk\{(x1, y1)} and
(x2, y2) ∈ {(x, y) ∈ D′

k | d(x, y) ≥ d(a, b), ∀(a, b) ∈ D′

k},
d1 = d(x1, y1) and d2 = d(x2, y2). Let ∆d = d1 − d2

be a new random variable, the difference between the
observed values. Applying the Hoeffding bound to
∆d, if ∆d > εk, we can confidently say that, with
probability 1 − δ, the difference between d1 and d2

is larger than zero, and select (x1, y1) as the pair of
variables representing the diameter of the cluster. That
is,

d1 − d2 > εk ⇒ diam(Ck) = d1(3.4)

With this rule, the ODAC system will only apply the
splitting test when the true diameter of the cluster is
known with statistical confidence given by the Hoeffding
bound. This rule has another feature: it supports
the decision of splitting or aggregation as it triggers
the moment when the leaf has been fed with enough
examples to support it.

498



3.2.1 Feeding the System In the ODAC system,
each example is processed only once. The system
incrementally updates, at each new example arrival, the
sufficient statistics needed to compute the dissimilarity
matrix, enabling its application to clustering of data
streams. The dissimilarity matrix for each leaf is
only computed when it is being tested for splitting
or aggregation, after receiving a minimum number of
examples. When processing a new example, only the
leaves are updated, reducing computation of unneeded
dissimilarities; this speeds up the process every time
the structure grows. We have decided to model the
time series first-order differences in order to reduce
the negative effect of autocorrelation on the Hoeffding
bound, preventing larger errors. The missing values can
be easily treated with a zero value, considering that,
when unknown, the time series is constant.

3.2.2 Splitting Criteria Several criteria and heuris-
tics can be used to perform division of a cluster of vari-
ables using the previously presented distance measure,
supported by the confidence level given by the Hoeffd-
ing bound. The splitting criterion should reflect some
relation among the distances between variables of the
cluster. Given this fact, we can impose a cluster to be
split if it includes a high difference between (d1−d) and
(d− d0), where d0 stands for the minimum distance be-
tween variables belonging to the cluster and d is the av-
erage of all distances in the cluster. In our approach, we
relate the expression with the global difference d1 − d0.
Our heuristic is the following: for a given cluster Ck, we
choose to split this leaf if:

(d1 − d0)
∣

∣d1 + d0 − 2d
∣

∣ > εk(3.5)

This criterion has also appeared to be useful on acting
as a stopping criterion for the hierarchy growing phase.
When a split point is reported, the pivots are variables
x1 and x2 where d1 = d(x1, x2), and the system assigns
each of the remaining variables of the old cluster to the
cluster which has the closest pivot.

3.3 Aggregating at Concept Drift Detection

If a leaf expresses changes in the relations between
variables it represents, then perhaps the split decision
that has created this leaf may in fact be outdated. The
heuristic that is adopted in this work is the analysis of
diameters. This way, no computation is needed between
the variables of the two siblings. For each given leaf
Ck, we shall test the diameters of Ck, Ck’s sibling (Cs)
and Ck’s parent (Cj), assuming that the sum of the
children diameters should not be as large as two times
the diameter of the parent. We define a new random
variable ∆a = 2 · diam(Cj) − (diam(Ck) + diam(Cs)).

Applying the Hoeffding bound to this random variable,
if ∆a > εj then the condition is met, so the splitting
decision is still a good approach. Given this, we choose
to aggregate on Cj if

2 · diam(Cj) − (diam(Ck) + diam(Cs)) < εj(3.6)

supported by the confidence given by the parent’s
consumed data. The system decreases the number of
clusters as previous division no longer reflects the best
divisive structure of data. The resulting leaf starts new
computations and a concept drift is detected.

3.4 When a Tie Occurs To distinguish between
the cases where the cluster has many variables nearly
equidistant and the cases where there are two or more
highly dissimilar variables, a tweak must be done.
Having in mind the application of the system to a data
stream with high dimension, possibly with hundreds or
thousands of variables, we turn to a heuristic approach.
Based on techniques presented in [2], we introduce a
parameter to the system, τ , which determines how long
will we let the system check for the real diameter until
we force the splitting and aggregation tests. At any
time, if τ > εk the system applies the tests, assuming the
leaf has been fed with enough examples, hence it should
consider the highest distance to be the real diameter.

3.5 Memory Usage and Time Complexity The
ODAC procedure presents the required features of adap-
tive learning systems. A system which aims at effi-
ciently clustering data streams must comply with con-
stant memory occupation with constant execution time
in respect to the number of examples [1]. In ODAC,
system space complexity is constant on the number of
examples, even considering the infinite amount of ex-
amples usually present in data streams. An important
feature of this algorithm is that every time a split is
performed on a leaf with n variables, the global number
of dissimilarities needed to be computed at the next it-
eration diminishes at least n − 1 (worst case scenario)
and at most (n/2)2 (best case scenario). As imperious,
the time complexity of each iteration of the system is
constant given the number of examples, even decreasing
with every split occurrence, being therefore capable of
addressing data streams.

4 Experimental Evaluation

The first evaluation of the proposed system is made us-
ing synthetic data sets created with specific definitions,
described in section 4.1. Later on, the system is tested
with real data, from the PDMC Sensor Data Set and
the Electrical Demand Data Set.
For each data set (with n variables), 10 runs of k-means

499



are executed, each one with all possible numbers of clus-
ters, k. Quality measures are calculated in these runs
and an average is considered to find the best number of
clusters for the dataset. Afterwards, ODAC is applied
in the same data set to enable a comparison between the
final structure and the one provided by k-means. Com-
parison with a batch DIANA system, using the same
correlation-based distance measure, is also performed.
The cluster validity indexes used to evaluate the results
are the MHΓ - Modified Hubert’s Γ Statistic and the DVI
- Dunn’s Validity Index [3]. The ODAC system allows
the analysis of another quality measure, the CPCC -
Cophenetic Correlation Coefficient [4], which measures
quality in hierarchical structures. High values of any
of these three indexes indicate the presence of a good
clustering structure. On all experiments, the Hoeffding
bound δ parameter was set to 0.05; the τ parameter of
the ODAC system was set to 0.02.

4.1 Evaluation on Artificial Data The data sets
used in this section were created using a time series
generator that produces n time series belonging to a
predefined number k of clusters with a noise constant
β. Each cluster ck has a pivot time series p, and the
remaining time series are created as p + λ where

λ ∼ U(−βp, βp)(4.7)

We created five data sets with ten variables each,
observed along 100K examples, with β = 0.3 and
especially prepared to test different hypothesis: closed
(one cluster), sparse (no clustering), two clusters and
4C (four clusters). The structure of 4C was created as

{{a1, a2}, {a3, a4, a5}, {a6}, {a7, a8, a9, a10}}.

For all these stationary data sets, ODAC finds the cor-
rect structure, indicating good clustering capabilities.

4.1.1 Concept Drift Data Set For a more complex
evaluation of system’s dynamics (splitting and aggrega-
tion), we create a drifting data set. The data set used is
equivalent to 4C in the first 50K examples, and exactly
at that time, the configuration changes to

{{a1, a2, a3, a4, a10}, {a5, a6, a7}, {a8, a9}}

The system models the first concept with ease, achieving
a stable structure in 18448 examples. The system starts
to try to grow a sub-tree after 3220 examples from
the drift, searching for a better structure. After 12448
examples from the concept drift, the system collapses
all the structure, assuming the concept is completely
different from the previous one. The second concept is
found 21672 examples after the real concept drift. The
global results suggest good performance on splitting,
concept drift detection and aggregation.

Figure 1: Comparison between ODAC and DIANA
(user01 data set). Although higher-level structure is
different, at cluster level both structures are quite close.

4.2 PDMC Sensor Data Sets The training data
set for the PDMC competition consists of approximately
10,000 hours of sensor data, containing several variables:
userID, sessionID, sessionTime, characteristic[1..2], an-
notation, gender and sensor[1..9]. We concentrate on
sensors 2 to 9, since we are interested in finding the
relations between different sensor data, and extract all
data by userID, ending with several data sets of eight
continuous variables. In figure 1, a comparison between
ODAC and a batch DIANA system using the same dis-
similarity measure over the data of one user (user01 with
93344 examples) is shown, presenting the closeness be-
tween the two results. For other userIDs, results are
very similar. We also try to find the right number of
clusters for each user with more than 50K examples,
possibly the same for all. Tables 1 and 2 present the
evaluation for user06 and user25 data sets. Apparently,
from a conservative point of view, the best number of
clusters is 3. Figure 2 sketches the ODAC system’s final
structure, for the same data sets. The same structure
was found, agreeing with the expected number of clus-
ters given by k-means experience.

System nc MHΓ DVI CPCC

2 0.141 0.300 –
K-Means 3 0.308 0.300 –

4 0.311 0.198 –
ODAC 3 0.377 0.891 0.251

Table 1: K-Means and ODAC Quality Results (user06)

System nc MHΓ DVI CPCC

2 0.099 0.272 –
K-Means 3 0.360 0.325 –

4 0.362 0.242 –
ODAC 3 0.191 1.026 0.479

Table 2: K-Means and ODAC Quality Results (user25)

500



Figure 2: ODAC Final Structure (user06 and user25)

Figure 3: ODAC Final Structure (active power)

4.3 Electrical Demand Data Set Time series of
electrical data are one of the most widely studied sets
of data, mainly for forecast purposes, usually by means
of neural networks. From the raw data received at each
sub-station, gathered during four months, we extract
only the variables related to load intensity (I), active
(P) and reactive (Q) power (according to the, possibly
erroneous, variable ID). Each example represents the
average value for the past five minutes of each variable,
resulting in data sets with 34734 examples, from which
we model only active power (887 variables). The final
structure can be analyzed on figure 3. The image is
rather large and is presented only as an example of
the structure obtained as a whole, revealing a tree-like
structure, away from the list-like worst-case scenario.
We present a sketch of the variables, for one of the
clusters, in figure 4. This cluster expresses good intra
cluster correlation (µ = 0.629, σ = 0.227), considering
that this is real data from five variables along 7385
observations.

5 Conclusions

This paper introduces a time series whole clustering sys-
tem that incrementally constructs a hierarchy of clusters
from a divisive point of view. The main setting of the
system is the monitoring of existing clusters’ diameters.
The examples are processed as they arrive, using a single
scan over the data. The system incrementally computes
the dissimilarities between time series, maintaining and
updating the sufficient statistics at each new example
arrival. One important feature of the system is that
the dissimilarity matrix is updated only for the cluster

Figure 4: Cluster Plot (active power). In this cluster,
five variables are kept together, along 7385 examples.

currently being tested, diminishing the global number of
dissimilarities needed to be computed at each step. The
system uses a correlation-based dissimilarity measure
and supports the splitting and aggregating decisions on
a significance level given by the Hoeffding bound. Ex-
perimental results show competitive performance when
compared with batch clustering analysis, evolving and
adapting in the presence of concept drift. Future work
will focus on the application of the system to more real-
world data and on a fuzzy approach to the assignment
of variables to new clusters.

References

[1] D. Barbará. Requirements for clustering data streams.
SIGKDD Explorations, 3(2):23–27, January 2002.

[2] P. Domingos and G. Hulten. Mining high-speed data
streams. In Proceedings of the Sixth ACM SIGKDD

International Conference on Knowledge Discovery and

Data Mining, pages 71–80. ACM Press, 2000.
[3] M. Halkidi, Y. Batistakis, and M. Varzirgiannis. On

clustering validation techniques. Journal of Intelligent

Information Systems, 17(2-3):107–145, 2001.
[4] J. Han and M. Kamber. Data Mining: Concepts and

Techniques. Morgan Kaufmann, 2001.
[5] E. J. Keogh, J. Lin, and W. Truppel. Clustering of the

time series subsequences is meaningless: Implications
for previous and future research. In Proceedings of the

IEEE International Conference on Data Mining, pages
115–122. IEEE Computer Society Press, 2003.

[6] M. Wang and X. S. Wang. Efficient evaluation of com-
posite correlations for streaming time series. In Ad-

vances in Web-Age Information Management - WAIM

2003, pages 369–380. Springer Verlag, 2003.
[7] G. Widmer and M. Kubat. Learning in the presence of

concept drift and hidden contexts. Machine Learning,
23(2):69–101, 1996.

501


