Control of search parameters in evolutionary algorithms

Joao Pedro Pedroso

Riken Institute, Laboratory for Information Synthesis
Hirosawa 2-1, Wako-shi, Saitama 351-01, Japan
e-mail: jpp@brain.riken.go.jp

Abstract— 1In this paper we present a strategy
for automatically adapting the control parameters of
an evolutionary algorithm. Its main features consist
on its simplicity, and on providing total independence
of the type of problem being solved.

I. Introduction

Evolutionary algorithms have many well-known appli-
cations in the solution of non linear optimisation prob-
lems. They are generally considered to be very reliable
methods, although sometimes problems with prema-
ture convergence arise. In these cases, the choice of
the algorithm’s parameters can be very important for
obtaining a good solution.

In this paper we introduce a strategy for automatic
adaptation of the search parameters. One of the moti-
vations for the implementation of such a strategy is to
provide a completely autonomous system, which would
be able to tackle any optimisation problem of its class
without requiring the user to set up the control pa-
rameters manually. The other motivation concerns the
ability to perform the evolutionary search for an un-
specified amount of time, possibly with changes in the
form of the objective function in the middle, always
trying to keep appropriate search parameters.

The strategy proposed is largely empirical, as it is
very difficult to accurately keep track of the whole
status of the system, and predict exactly what action
should be taken. It consists firstly on an exploitation
of the search when the parameters are favourable to
the evolution of the current population, and hence the
objective is being ameliorated. This is done until we
obtain no improvement in a generation of the evolu-
tionary algorithm. When this arises new control pa-
rameters are randomly determined. An improvement
to this basic technique is done by adding a memory
to the control system, which would restore old values
of the control parameters if the newly tested ones did
not provide an improvement. Finally, a simple system
for avoiding premature convergence is implemented,
which forces an increase in the mutation parameters if
too many identical individuals are found in the popu-
lation.

We test the strategy proposed on a set of benchmark

functions available in the literature, and compare the
results obtained to the case where the parameters are
fixed, either randomly or at their optimal value.

The results presented were obtained with an im-
plementation based on floating point representation
of the solution, and a particular shape of the mu-
tation, recombination, selection, and scaling opera-
tors. The ideas that motivate the strategy proposed
should, nevertheless, be valid for other implementation
paradigms.

II. The genetic operators

The problems we deal with in this paper are nonlin-
ear optimisation problems on a continuous domain.
The genetic representation of solutions in our system
is identical to the mathematical one: vectors of float-
ing point numbers. So, for a problem of dimension n,
the solution is a vector x = (z; ...x,); we call each z;
a chromosome, and the vector = a genome.

The generation of a new individual from two parents
is composed of three steps: meiosis, possibly comple-
mented with crossover, possibly followed by mutation.
The meiosis and crossover processes produce a linear
combination of two individuals selected from the pop-
ulation. The mutation adds a random perturbation
to the solution created this way. All these operators
are characterised by two parameters: probability of
occurrence and intensity of the operation.

We use the following notation: vP, xP, uP, are the
probabilities of meiosis, crossover, and mutation, re-
spectively; v, x*, u® are their respective intensities.
r is a random number uniformly distributed in [0, 1],
and §(s) =1— r** is the distribution of the perturba-
tions, where s is the intensity.

For creating a new solution x from two parents y and
z, the process of reproduction is presented in figure 1.

The meiosis operation creates an offspring genome
from two parents. This is done through random se-
lection of chromosomes from either the mother or the
father, possibly complemented by crossover, until the
genome has all its chromosomes.

Crossover takes on two chromosomes, and recom-
bines them, leading to an intermediary value. The

if r <vP
fori =1 ton do

Do the meiosis with probability v

if r <vs (Note: v° measures the intensity of meiosis.)
if r < xP With some probability do crossover,
set z; :=y; + (zi — yi) X°7 with intensity x*

else
set x; = y; no crossover, exact copy of y;

else
. do the same, swapping the roles of y and z
done

else In this case, no meiosis occurs:

set v :=y,orx:=2 copy exactly y or z, with same prob.
for i =1 to n do Now, do the mutation: for each element of x
if r < uP with probability u?
T =z + 6(puf) add mutation of intensity p1°.

done

Figure 1: Overview of the genetic operations.

smaller the “crossover intensity” parameter is, the
closer the produced chromosome is to that of one of
the parents.

Mutation adds, with some probability, a random
perturbation to the value obtained that way. For each
mutation, we randomly choose to add or subtract 4(s)
to the value of the chromosome!, where s gives the
intensity, or magnitude of the mutation.

An additional parameter used in the algorithm is
the selectivity, a factor that specifies how competitive
an individual must be in relation to the average in or-
der to have a favoured probability of being selected.
This parameter, denoted by o, acts on the scaling of
the individuals’ fitness prior to their selection for re-
producing. If ¢ is close to 0, the differences between
individuals are attenuated, and selection is close to
random. When o is close to 1, the better individ-
uals are strongly favoured, and tend to be the only
selected. (See [6] for more details on this scaling tech-
nique.) The selection scheme used is roulette wheel
selection; for its description see, for example, [2].

III. The benchmark test bed

For the evaluation of the strategies that we propose
in this paper, we have relied on the set of benchmark
tests proposed in [1]. The set of test functions is the

following;:
Problem 1: the sphere model. Value to reach: 107°.

:Z (zi —1)?
€[5 5] N

Problem 2: Griewank’s function. Value to reach: 107%.

N
%Z —100 Hcos <%> +1

i=1
d = 4000

LThe value of the perturbation is scaled, so that it covers the
whole region between the value z; and its bounds.

z; €[—600,600] i=1,...,N

Problem 3: Shekel’s foxholes. Value to reach: —9. (c;,
A(3) available in [1]).

“ 1
Z lle —ADII” + ¢
Jj=1
m = 30
€ [0,10]

Problem 4: Michalewicz’ function.
—9.66 (for N = 10).

i=1,...,N

Value to reach:

m =10
z; €[0,7] i=1,...,N

Problem 5: Langerman’s function. Value to reach:

—1.4 (¢;, A(i) available in [1]).

Z _lz—AG)1? A(J)Hz

j=1

- cos(m - [l — A7)
m = 30

€[0,10] i=1,...,N

For all the results reported in this paper, we have
used benchmark problems of dimension 10 (N=10).
The performance indexes, measured on 100 indepen-
dent runs, are the following:

e the best solution obtained for all runs.
e the average solution obtained.

e the number of successes, i.e., the number of times
the value to reach was obtained.

In order to have a reference for comparing the per-
formances for the different strategies employed, the
evolutionary system used was set up with a population
of 25 elements, evolving for 2500 generations. Under
these circumstances, the difficult benchmark problems
are virtually unsolvable, in a systematic way, by the
evolutionary algorithm. It is, thus, a good basis where
to observe effects of the control parameters in the evo-
lution.

IV. Results with a standard algorithm

For the purpose of having a term of comparison for
the strategy of adapting the control parameters that
we propose in this paper, we have first made a series
of runs with static parameters.

A. Random parameters

The first series of results were obtained for random
control parameters. We have performed a series of 100
independent runs, each with exogenous, independent,
randomly determined control parameters. Results are
presented in table 1.

Table 1: Results with random parameters.

Table 3: Results for optimised search parameters.

| Problem | Best sol. | Mean best sol. | # successes | | Problem | Best sol. | Mean best sol. | # successes |
Sphere 4.8e-07 2.31 1 Sphere 4.4e-13 1.5e-11 100
Griewank 0.0429 7.85 0 Griewank 7.4e-03 5.6e-02 0
Shekel -10.16 -1.15 1 Shekel -10.2 -1.71 2
Michalewicz -9.93 -7.55 14 Michalewicz -9.98 -9.95 100
Langerman -1.499 -0.513 2 Langerman -1.31 -0.615 0

B. Optimal parameters

We have next attempted to optimise the control pa-
rameters using another evolutionary algorithm. This
method was inspired in the one described in [3], the
multilevel genetic algorithm, where a meta-genetic al-
gorithm is used to tune the control parameters of an-
other genetic algorithm, making this last adaptive. In
our case, we have set the meta problem as a completely
independent one, whose objective is to find the control
parameters which would lead to optimal, or more reli-
able, performance of the inner algorithm.

As it turned out, for the benchmark test bed used
and for the limited number of generations and pop-
ulation size, this meta algorithm was rather unreli-
able. Its solution—the control parameters of the in-
ner algorithm—did not stabilise. This was due to the
nature of the meta objective functions, which are ex-
tremely noisy. For the same value of the meta solution
(the control parameters), one could obtain many dif-
ferent values of the meta fitness (the best objective
found by the inner algorithm, using those control pa-
rameters). In order to select more reliable parameters,
we decided to take on the 1% best meta solutions ob-
tained during the evolutionary process, and average
their values. These results are presented in table 2.
Note that, except for the case of the sphere model (the
only unimodal benchmark), these values were quite
disperse.

Table 2: Optimal parameters for each benchmark.

| Problem | u? | I | x? | x° | v?P | v | o |
Sphere .0086 | .021 | .63 | .18 | .86 | .52 | .72
Griewank .032 A3 | .56 | .37 | .38 | .61 | .74
Shekel .24 .63 | .b1 | .33 | .54 | .b7 | .60
Michalewicz .043 68 | .72 | 35| .66 | 48 | .64
Langerman .54 20 | 42 | 45| .73 | .69 | .60

We have then used these control parameters to tune
the evolutionary algorithm. The results obtained this
way, for 100 independent runs, are reported in table 3.

As these results clearly show, setting the appropri-
ate values of the control parameters is a rather diffi-

cult task. The optimisation with another evolutionary
algorithm does not lead to parameters providing a re-
liable final performance for all the problems, although
it involves a huge amount of computational time for
the solution of the meta problem. During the meta
optimisation process, all the optimal values of each
benchmark were obtained by the inner algorithm; but
we could not find the parameters which would allow
finding them in a systematic way. Furthermore, the
meta solution (the control parameters of the inner op-
timisation) would alternate regions of good and poor
performance; absolute convergence was not observed.

An additional drawback of this procedure is that
the parameters determined are highly dependent on
the benchmark. Good parameters for one problem are
not, in general, still good for another one, as the results
in table 2 show. Hence, if a new problem would be to
be solved systematically with reasonable performance,
a new meta optimisation would also be involved.

V. Adaptation strategies

A. Randomly perturbing parameters

In order to deal with the extreme complexity of the
adaptation of control parameters problem, we could
nor devise solutions other than those of, equally ex-
treme, simplicity.

A first strategy consists on the following: we start
the evolutionary algorithm with random parameters.
We then create a new population, using these param-
eters for the generation of its individuals. Then, if the
solution was improved, we keep the parameters; if not,
we set new random parameters. We then perform an-
other generation. This process is repeated until the
termination condition is met. New parameters are de-
termined with uniform random distribution in their
domain, [0, 1].

Results obtained with this strategy are reported in
table 4. Although they are far from being satisfactory,
this strategy already provides some desirable features:
there is no need of external interference for the deter-
mination of the control parameters, and it is indepen-
dent of the benchmark problem.

Table 4: Results for randomly adapted parameters.

Table 5: Results for random adaptation with memory.

| Problem | Best sol. | Mean best sol. | # successes | | Problem | Best sol. | Mean best sol. | # successes |
Sphere 3.29e-08 1.89¢-4 3 Sphere 3.93e-14 5.37e-06 69
Griewank 0.025 0.184 0 Griewank 0.0148 0.0975 0
Shekel -10.2 -1.66 2 Shekel -10.2 -1.76 3
Michalewicz -9.93 -9.75 89 Michalewicz -9.98 -9.87 100
Langerman -1.5 -0.568 5 Langerman -1.5 -0.617 4

B. Simple adaptation of parameters

A first improvement that can be made to this strat-
egy concerns implementing a primitive memory: the
system remembers what was the last action taken.

At each generation, we randomly select what param-
eter to “adapt”. We then set it randomly, and keep in
memory the old value that was being used. If the ac-
tion was successful (i.e., the objective was ameliorated
in the subsequent generation), then the parameter is
kept; otherwise, we restore the previous value. This
being done, we randomly choose another parameter
to “adapt”, and pursue this way until a termination
criteria is met.

A second improvement consists on implementing a
sentinel for checking premature convergence. In some
situations, if the mutation intensity is too small, we
may reach a population composed of individuals all
around the same point; and, as there are still some
small mutations being done, minimal improvements
might be occurring, leading for no action in the pa-
rameter adaptation. In order to prevent this, we im-
plemented a system for checking if all the individuals
are similar. We define two individuals y and z as not
similar iff 3 : |ly; — 2| > 0.01B;, where B; is the
difference between the upper and the lower bound for
the chromosome 3.

If at any given point of the evolution all individ-
uals are similar, we have premature convergence; in
this case, we force the mutation parameter to be in-
creased. Note that this only provides a faster way for
leaving premature convergence: a random perturba-
tion of the mutation intensity parameter would sooner
or later arise, with an equivalent effect. But this can
avoid wasting too much time around a particular so-
lution, doing only a very localised search.

Results obtained with this strategy are reported in
table 5. An overall improvement of the performance
for all the benchmark problems is observed, both in
terms of reliability and in terms of quality of the solu-
tions.

VI. Conclusion

In this paper we present a simple strategy for auto-
matically adapting the control parameters of an evo-

lutionary algorithm. It basically consists of randomly
perturbing them whenever a new generation of the sys-
tem does not lead to and improved solution.

Its nice characteristics, apart from its extreme sim-
plicity, consist on providing total independence with
respect to the type of problem being solved. There is
no need of external interference for the determination
of control parameters, independently of the problem
being solved.

Some tests with benchmark problems available in
the literature tend to indicate that this strategy in-
creases both the reliability of the evolutionary system
and the quality of the solutions found.

Future improvements that we foresee to this strat-
egy consist on finding a more adequate distribution
for the random perturbation of the parameters, which
could potentially permit further improvements on the
speed and on the quality of the solutions.

References

[1] H. Bersini, M. Dorigo, L. Gambardella, S. Langer-
man, and G. Seront. First international contest on
evolutionary optimization, 1996. In IEEE Interna-
tional Conference on Evolutionary Computation.

[2] D.E. Goldberg. Genetic Algorithms in Search, Op-
timization & Machine Learning. Addison-Wesley,
1989.

[3] J. J. Grefenstette. Optimization of control param-
eters for genetic algorithms. IEEE Transactions
od Systems, Man, and Cybernetics, 16(1):122-128,
1986.

[4] J. H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, 1975.

[5] Z. Michalewicz. Genetic Algorithms + Data Struc-
tures = Fvolution Programs. Springer-Verlag, sec-
ond, extended edition, 1994.

[6] J. P. Pedroso. Niche search: an evolutionary al-
gorithm for global optimisation. In H.-M. Voigt,
W. Ebeling, I. Rechenberg, and H.-P. Schwefel, edi-
tors, Parallel Problem Solving from Nature IV, vol-
ume 1141 of Lecture Notes in Computer Science,
Berlin, Germany, 1996. Springer.

