A WEB-BASED SYSTEM FOR MULTI-AGENT INTERACTIVE
TIMETABLING

Joao Pedro Pedroso

Nelma Moreira

Rogério Reis

DCC-FC & LIACC, Universidade do Porto
R. do Campo Alegre 823, 4150-180 Porto, Portugal
{jpp, nam, rvr}@ncc.up.pt

Abstract—We propose a web-based timetabling system
for a typical situation in universities, where agents (usually
departments or faculties) compete for a set of resources
(class rooms) on a given number of time slots.

Each agent (typically a person, on the behalf of a depart-
ment) proposes the placement (room and time) for events.
A dispatching system decides which event should be sched-
uled next, based on a pre-established set of rules, and asks
its placement to the corresponding department.

The system also includes a solver that suggests the place-
ment of an event to each agent, thus allowing a completely
automated timetable construction.

We describe a prototype implemented at the Faculty of
Sciences, University of Porto.

I. INTRODUCTION

Typically in a timetabling problem one needs to as-
sign to every element of a set of events, each requiring a
set of resources, to a time slot and to a room. In this
assignment, a set of constraints must be satisfied; some
constraints are hard (they cannot be violated for feasibil-
ity) and some other are soft (for which violation should
be avoided, but is not prohibited).

In most universities, a subset of the rooms available for
classes is shared by several departments. On the other
hand, each department normally has its own rules for
constructing the timetables: student preferences, lecturer
preferences, breaks, etc. can be handled differently by dif-
ferent departments.

Our experience shows that when there is not a room au-
thority which controls access to the rooms by the depart-
ments, each department tends to produce its own timeta-
bles, on its own rooms, independently. This causes prob-
lems to departments which own an insufficient number of
rooms and therefore are forced to use rooms on scatter
slots left by the others.

The aim of the current paper is to propose a method
and a data specification which enable a set of depart-
ments to simultaneously construct their timetables. In
this context, we call department to the entity which has
the responsibility of preparing the timetables for a set of
courses.

We will also make use of an authority that controls the
rooms, and which determines the order through which
departments request rooms to events, based on a set of
pre-established rules. This way, a department can con-
struct its timetable independently of the others (with the
exception of room occupation), while keeping a high de-
gree of “fairness” on the room attribution.

We will assume that at any point of the construction
there is complete information, i.e., at any time every de-
partment knows the partial solution of all the others. This
enables each department to construct its solution taking
into consideration the (partial) solutions of all the others,
in order to avoid room clashes, consider courses which are
attended by students of more that one department, etc.

II. TIMETABLE CONSTRUCTION PROCESS

The process of construction of a timetable is the follow-
ing (fig.1):

e An iteration corresponds to the attribution of a
room, at a given time, to an event.

e Room dispatching is made according to known crite-
ria, established by the set of departments.

e Based on those criteria, the dispatcher selects the
next event to be scheduled, and asks its department
a placement for it. A placement specifies a room and
a starting time. The room will be reserved for the
duration of the event.

e Departments formulate their requests with full infor-
mation of the previously dispatched events.

e The room authority dispatches only requests that do
not lead to room clashes and comply with all the
other hard constraints.

e Before starting a new iteration, the system verifies
that no request of placement exchange is present. All
existing exchange requests must be dealt before the
beginning of the new iteration.

e A department may request the release of a room pre-
viously assigned to any of its events. The release with
be done immediately, and the event will be included
in the unplaced events list.

A complete solution will include the specification of the
room and time for all the events. Additionally, there is a
set of events (a set of repeated classes for a given course),
of which a student (or group of similar students) has to
attend exactly one; the solution must specify which of
these events each student attends.

Timetables are constructed by each of the departments
independently, except for room attribution.

V

Partial solution

publishing

Next

iteration
Submission of
classroom
assignments

V

Scheduler
decision

V

New partial
solution
generation

Fig. 1. Timetable construction process

III. DISPATCH RULES

The actual rules used by the dispatch authority might
be different from university to university, although the
concepts proposed here should be general. The ideas sup-
porting the rules should be mostly common sense.

As a simple possibility, we propose the following dis-
patching rules for ordering events:

e room size required for the number of students that
attend the corresponding event;

e the number of compatible rooms with the event (i.e.,
rooms large enough and with all the required fea-
tures);

e the number slots still available in the whole of these
rooms.

The preceding rules are goals; this means that the sec-
ond rule is only used for deciding on ties of the first rule,
and so on.

These rules allow the dispatcher to select the next event
to be scheduled, and to ask the corresponding department
its placement. In this situation, a department only has to
find the placement for one event at a time.

Another concern is the way that exchanges can be done
in the current (possibly partial) solution. We propose that
exchanges take precedence over regular placements, and
that when there are several requests for exchanges they
are fulfilled using the order through which they have been
dispatched.

There is also the possibility of releasing a room pre-
viously assigned to some event, at any time, by demand
of the department which requested it. The event will be
added to the unplaced events list with its initial priority.

IV. DATA MODEL

In this section we describe the data model that supports
the information available on our timetabling system. No
explicit difference will be made between input data and
output data, or between global data and department lo-
cal data. The data model should be expressive enough
both for the production of human-readable input-output
information and for system manipulations.

The moments at which events might start are defined
by pairs (p, s), where:

e any p belongs to a scope, which is an ordered set of
periods;

e any s belongs to an ordered set of slots available for
each period.

Entities are:

e Persons, who can have a limited number of time
preferences, with a commitment level and polarity
(positive or negative). Each person may have a role
as a teacher or as a student.

e Groups are sets of students that must attend to-
gether a given set of lessons or courses. Groups are
used for simplifying event assignment.

e Departments are the entities responsible for de-
termining a timetable for a set of events, and are
therefore characterised by this set. They addition-
ally might own a set of rooms, which might be shared
with the other departments or not.

e Events might belong to courses; a course has
classes with several kinds of lessons (lectures, lab-
oratories, precepts, etc), each possibly occurring sev-
eral times a period and during a number of time slots.
Additionally, each class might have to be repeated a
number of times, as there might be an upper bound
on the number of students attending it.

e Rooms have a capacity (maximal number of stu-
dents), might belong to a department, and can have
several features from a user-defined set.

Events correspond to class repetitions. An event can
have a set of room features to be satisfied or avoided,
or even a set of preferred rooms. Each person or group
attends to events or courses, as a teacher or as a student.
If a student attends to a course, he/she must attend one
of the class repetitions, for each kind of lesson and occur-
rence.

The timetabling system, must provide an assignment
to a room and a time slot for each event.

These assignments can generate violations of a set of
constraints.

The constraints are organised by goals, whose list is
specified by each department. Each constraint has a
weight, with which its violations will be accounted on
the goal to which it belongs. The first goal corresponds
to the hard constraints.

The semantics of each constraint are not defined in this
data model; they are described somewhere else. How-
ever some information must be provided on the way vi-
olations to constraints should be accounted, which will
drive through the construction process.

As an example of what we define as data, we can select
the following:

e the break times for each department, i.e slots that
should not have any event assigned

e for each person, the maximum number of as-
signed slots per period

e for each person, the maximum number of con-
secutive assigned slots per period

e time ordering between events: events that can be
consecutive, or simultaneous, or one before the
other, or one after the other, etc.

After an event is actually placed—i.e., the correspond-
ing request has been deferred by the dispatcher—, it is
marked on the data as fized, and will be allowed to change
only in case the underlying department releases or ex-
changes it.

For the description of the data model we defined an XML
language [?]. This language is a first attempt towards a
general language for describing timetabling problems and

solutions, that will allow a better comparison between
different approaches and an easier data exchange between
systems (see also [?], [?]).

In the section VIII we represent a DTD (Document Type
Definition) for a fragment of the above data model.

V. ALGORITHMIC BACKGROUND

The architecture used in this system allows each depart-
ment to use its own preferences for choosing the placement
to the event that has been requested by the dispatcher,
i.e., its room and time. Even though the actual decision
is taken by the user, we propose some guidelines on an
algorithm to support it.

The rationale is that the definition of the relevant con-
straints is too intricate for the normal user. To overcome
this problem, the system supplies a set of predefined con-
straints, with documented semantics. The user must in-
dicate which of them are relevant, and to what extent.
For this end, the user defines a list of goals, ordered by
relevance. Then, for each constraint the user states the
corresponding goal, and how violations of this constraint
should be weighted. Hence the first goal corresponds to
the hard constraints, with higher weights on the criteria
that are considered more relevant (e.g., room, teacher,
and student clashes with high weights, and classes on
lunchtime with low weight; see [?] for a different treat-
ment of soft constraints). The last goal corresponds to
the softest constraints (like having no classes on the first
hours of each day).

To suggest the placement for an event, the solver uses a
greedy system: it selects the best room and the best time
for the event. By best we mean the one which leads to less
weighted violations on the first goal, or a tie on this goal
with less weighted violations on the second goal, and so
on [?]. The user might then accept this move, and submit
it to the dispatcher, or ask for the next suggestion.

V1. WEB BASED MODEL

Because there is need of a two way negotiation proto-
col, both in the normal event placement and the exchange
placement consent, a pure HT'TP server model cannot be
used. Instead, dedicated client programs are used by each
department agent to interact with the dispatcher server
(fig.2). A timetabling solver program—the one proposed
or any other—, can either assist the choices or take full
control over them. In the first scenario, at any time, the
partial solution can be consulted on the Web server with
a normal browser (fig.3). If an automated solver is used
it can get an updated partial solution from the client pro-
gram. Authentication is only needed between client and
server programs; it is implemented via public key cryp-
tography. All other comunication is done with normal,
public HTTP connections.

VIII. APPENDIX

Department B

We present here is a DTD for a fragment of our data
model.
———————> | Department C
Department A <VELEMENT timetabling
(scope|slots|persont|group+|course+|class+]|
Web Server event+|room+|feature*|department*|attends*|

assignment*|preference*|room_preferx|
break_time*|max_occupation|
max_consecutive*|time_order*|
goals*|constraint*)>
<!ELEMENT scope (period+)>
<!ELEMENT period (#PCDATA)>
Resource <IATTLIST period id ID #REQUIRED>
Scheduler <!ELEMENT slots (slot+)>
<!ELEMENT slot (#PCDATA)>
<IATTLIST slot id ID #REQUIRED>
<!ELEMENT person (#PCDATA) >
<!ATTLIST person id ID #REQUIRED>
""""""""""""""""" . <!ELEMENT group EMPTY>
Department Client
<IATTLIST group id ID #REQUIRED
number CDATA #REQUIRED>
Timetabling i <!ELEMENT preference EMPTY>
Solver g <!ATTLIST preference person IDREF #REQUIRED
period IDREF #REQUIRED
slot IDREF #REQUIRED
level CDATA #REQUIRED
positive (1|0) #REQUIRED>
<!ELEMENT department (#PCDATA)>
: <IATTLIST department id ID #REQUIRED>
Negotiation Web <!ELEMENT course (#PCDATA)>
frontend Browser <IATTLIST course id ID #REQUIRED
department IDREF #IMPLIED>
"""""""" <!ELEMENT class EMPTY>
<!ATTLIST class
id ID #REQUIRED
course IDREF #REQUIRED
type CDATA #REQUIRED
type_n CDATA #IMPLIED
nslots CDATA #IMPLIED
repetition CDATA #REQUIRED>
<IELEMENT event EMPTY>
<IATTLIST event id ID #REQUIRED
class IDREF #REQUIRED
repetition CDATA #REQUIRED
require IDREFS #IMPLIED
avoid IDREFS #IMPLIED>
<!ELEMENT attends EMPTY>
<!ATTLIST attends course IDREF #IMPLIED
event IDREF #IMPLIED
person IDREF #IMPLIED
role (teacher|student) "teacher"
group IDREF #IMPLIED
fixed (0|1) #IMPLIED>

Fig. 2. Web model

- - =

Fig. 3. Department Client scheme

VII. CONCLUSION

In this paper we introduce the concept of a room
authority, responsible for dispatching requests for event
placement. To the best of our knowledge, this is the first
time that this concept is used on timetabling. Neverthe-
less, on situations where there is competition for common
rooms by independent timetabling agents, this notion is
crucial for having a reasonable solution method.

We specify data management and solution architec-
tures. Their computer implementation is quite immedi-
ate, though the implementation in timetable production
requires political decisions which might not be straight-
forward.

The method proposed in this paper needs to be vali-
dated, firstly with benchmarks, then with real instances,
prior to actual use by the departments.

<!ELEMENT room (#PCDATA)>
<!ATTLIST room capacity CDATA #REQUIRED
id ID #REQUIRED
department IDREF #IMPLIED
features IDREFS #IMPLIED>
<IELEMENT feature (attribute,value)>
<VATTLIST feature id ID #REQUIRED>
<!ELEMENT attribute (#PCDATA)>
<!ELEMENT value (#PCDATA)>
<!ELEMENT room_prefer EMPTY>
<IATTLIST room_prefer event IDREF #REQUIRED
room IDREF #REQUIRED>
<!ELEMENT assignment EMPTY>
<!ATTLIST assignment event IDREF #REQUIRED
period IDREF #IMPLIED
slot IDREF #IMPLIED
room IDREF #IMPLIED
fixed (0|1) #IMPLIED>
<!ELEMENT break_time EMPTY>
<!ATTLIST break_time period IDREF #REQUIRED
slot_start IDREF #REQUIRED
nslots CDATA #IMPLIED
department IDREF #IMPLIED >
<!ELEMENT max_occupation (#PCDATA)>
<VATTLIST max_occupation person IDREF #IMPLIED
role (teacher| student) #IMPLIED>
<!ELEMENT max_consecutive (#PCDATA)>
<IATTLIST max_consecutive person IDREF #IMPLIED
role (teacher| student) #IMPLIED>
<!ELEMENT time_order EMPTY>
<!ATTLIST time_order ev_id IDREFS #REQUIRED
operator (beforel|after|
simultaneous|consecutive) >
<!ELEMENT goals (goal+)>
<!ATTLIST goals department IDREF #REQUIRED>
<!ELEMENT goal (#PCDATA)>
<!ATTLIST goal id ID #REQUIRED>
<!ELEMENT constraint EMPTY>
<VATTLIST constraint name CDATA #REQUIRED
id ID #REQUIRED
goal IDREF #REQUIRED
weight CDATA #REQUIRED>

