
1Niche Search: an Application in Vehicle RoutingJo~ao Pedro PedrosoAbstract|In this paper we describe a hybrid strategy forsolving combinatorial optimisation problems, obtained bycoupling a local search method to an evolutionary algorithm,and we provide an application to a particular variant of thevehicle routing problem.The local search method has been devised speci�cally forthis class of problems. It is based on a composite neighbour-hood, which is searched iteratively up to the point where nofurther improvements can be made.The evolutionary structure is the niche search, an algo-rithm based on the evolution of several independent niches.Niches whose individuals' �tness is good remain, and theothers tend to be replaced. The separation of the populationinto niches allows for a good compromise between intensivesearch (inside each niche) and diversi�cation (through theseparation between the niches).We also describe how we integrate speci�c problem knowl-edge into an evolutionary structure, in order to achieve ahigh performance optimisation algorithm. All the steps thatwe consider necessary are described in detail: �nding anappropriate representation, determining what is a relevantneighbourhood, setting up a local search method and �nallyintegrating the local search into an evolutionary algorithm.I. OverviewThe problem handled in this paper is a vehicle routingvariant that has been posed in [1], referred to as the Man-hattan Newspaper, or Telegraaf, Problem. It consists ofthe following: suppose we have a newspaper depot at somelocation in a city, a set of distributors, and a set of nodesof subscribers where the newspapers should be delivered.The objective is to distribute a newspaper to each of thesubscribers, and minimise the time of delivery to the last-served subscriber (or, equivalently, the total distance ranby the distributor who is assigned the longest path).When two or more solutions have the same objective, theone with the smallest average distribution time is preferred.Distances between nodes in the city are given by thesum of the vertical distance with the horizontal distancebetween the nodes (i.e., the city has only vertical and hor-izontal streets).These characteristics make this problem di�erent ofother vehicle routing problems. In this paper we describethe approach that we have devised for tackling it, whichconsists on heuristics that combine local search with globalsearch methods. These are intended to, respectively, inten-sify and diversify the search. Hence, local search routines�nd a local optimum for a given initial solution, whilstglobal search supplies the initial solutions where to performlocal search. The local search routines have been designedspeci�cally for this problem. They include the de�nition ofan appropriate neighbourhood and a procedure for itera-tively exploring it; we describe them in section II. SimilarJ. P. Pedroso is a researcher at the Riken Institute, Wako-shi,Japan. E-mail: jpp@brain.riken.go.jp.

ways for dealing with combinatorial optimisation problemshave been described, for example, in [2] and in [3]. Globalsearch is based on the niche search algorithm [4], and isdescribed in section III.A. Representation of the solutionsThe map of the city is represented by a set of nodesM = f0; 1; : : : ; Sg, where 0 denotes the depot, and S is thenumber of subscribers. Each node n 2 M is characterisedby its coordinates (xn; yn).The set of distributors is represented by D = f1; : : : ; Dg,where D is the total number of distributors used.We represent a solution x of the problem by a set ofvectors, x = fp1; : : : ; pDg, where the elements of a givenvector pi are the cities that the distributor i visits, in theorder of the visit. The dimension of each of these vectorsis n(i), the total number of nodes visited by distributor i(excluding the depot); hence, pi = [pi0 ; : : : ; pin(i)].For the purpose of the heuristics discussed in this paper,we have relied exclusively on feasible solutions. A solu-tion is feasible i� all the subscribers (i.e., all the nodesin the map) are visited exactly once by a distributor, andall the distributors start at the depot. More formally, ifwe consider a problem with S subscribers and D distribu-tors, we de�ne the set of feasible solutions F as the set ofx = fp1; : : : ; pDg such that:� pi0 = 0 8i 2 D� pij 2M n f0g 8i 2 D; j 2 f1; � � � ; n(i)g� 8s 6= 0 2M 9!(i; j) : i 2 D; j 2 f1; : : : ; n(i)g; pij = sFor example, a vector p2 = [0; 4; 2; 5] in the solution setmeans that distributor 2 starts at the depot (node 0),and supplies the subscribers at nodes 4; 2 and 5, in thisorder. The total time taken by this distributor is henceti = dist(0; 4) + dist(4; 2) + dist(2; 5), where the distancesdist(n;m) are the sum of the absolute values of the di�er-ence of the coordinates: dist(n;m) = jxn�xmj+ jyn�ymj.B. De�nition of the objectiveThe objective of this problem is to minimise the time ofserving the subscriber which is served the latest. The timeof serving the latest of the subscribers in this solution isgiven by: t(x) = maxi2D ti ; ti = n(i)Xj=1 dist(pij�1 ; pij)where ti is the time at which the subscriber pin(i) is served.As mentioned above, there is another goal in this prob-lem: to select, from the solutions which lead to the bestobjective (if there are more than one), the one with thesmallest average distribution time. The average time of

2serving for a solution x is given bya(x) =Xi2D n(i)Xj=1 dist(pij�1 ; pij)(n(i)� j + 1)SFor the purposes of the heuristic that we implemented, wehave relied on a classi�cation of the individuals based onthese two goals. If we denote the maximum of the dis-tribution times of a solution x by t(x), and the averagedistribution time by a(x), solution x1 is said to be betterthan x2 (x1 � x2) i�:� t(x1) < t(x2), or� t(x1) = t(x2) and a(x1) < a(x2).II. Local searchThe local search heuristic that we have devised for thisproblem comprises the search of several types of neighbour-hoods, which is performed iteratively until no further im-provement is obtained.The neighbourhoods devised for this problem are dividedinto two main categories: exchanges of nodes between twodistributors, and operations on the path of each of the dis-tributors. In the �rst category, we consider node pushingfrom one distributor to another and node exchanges be-tween two distributors. In the second one, we consider 2-and 3-change neighbourhoods, and 2-swap neighbourhoodwithin the path of each of the distributors.All the neighbourhoods that we consider in this paperare de�ned on the set F of feasible solutions.Node pushing neighbourhood, is de�ned by pushing nodesfrom one distributor to another: Np(x) = fy : y 2 Fand y can be obtained from x as follows: given the pathspi; pj 2 x of any two distributors i and j of x, remove onenode pia ; a > 0 from i and insert it in the path of jg.Node exchange neighbourhood, allows node exchanges be-tween two distributors i and j: Ne(x) = fy : y 2 Fand y can be obtained from x as follows: given the pathspi; pj 2 x of any two distributors i 6= j in x, considerthe ath node from path i and the bth node from path j,a; b > 0; then, swap nodes pia with pjbg.2-change neighbourhood for this routing problem is anadaptation of the 2-change neighbourhood de�ned byLin [5] for the travelling salesman problem. The idea isto operate on the paths of each of the distributors inde-pendently, by removing two edges and replacing them withanother two (di�erent) edges. It is de�ned as: N2(x) =fy : y 2 F and y can be obtained from x as follows: givena path pi 2 x, de�ning the set of nodes N visited by adistributor i, remove two edges from this path and replacethem with two other edges with both endpoints on Ng.3-change neighbourhood is an extension of the preced-ing one (N2 � N3), where 3 arcs are removed and re-placed. It also corresponds to an adaptation of the 3-change neighbourhood de�ned in [5] to this routing prob-lem. N3(x) = fy : y 2 F and y can be obtained from xas follows: given a path pi 2 x, de�ning the set of nodesN visited by a distributor i, remove three edges from this

path and replace them with three other edges with bothendpoints on Ng.2-swap neighbourhood operates on the paths of each ofthe distributors independently, by exchanging the positionof 2 nodes of the path: Ns(x) = fy : y 2 F and y can beobtained from x as follows: given a path pi 2 x, de�ningthe path of a distributor i, swap the node at position a > 0,pia with the node at position b > 0, pibg.A. IteratingLocal search is performed by combining the neighbour-hoods described above. Given a starting (feasible) solu-tion, each neighbouring region is explored, all the improv-ing solutions being accepted. Search proceeds by iteratingthrough these neighbourhoods, and repeating until no fur-ther improvement is achieved.Improvement in this context means that we can �nd asolution y in some neighbourhood of the current solution,x, such that y � x (and hence y replaces x).As there are multiple possibilities of combining thesearch on each of these neighbourhoods, we had to deter-mine a strategy which would, from one side, provide asgood as possible local optima, and from the other side beparsimonious in what concerns the computational burden.We have made some preliminary tests using random-start local search, and more speci�c tests at the time oftheir integration in the evolutionary algorithm. The com-plete local search strategy that appeared to perform best,starting with purely random feasible solutions, is the fol-lowing:get a feasible solution x0Procedure Local Search(x0)t = 0do Start the iterative procedure.t = t + 1xt = xt�18y 2 Np(xt) if (y � xt) xt := y Search all neighbourhoods in a given order.8y 2 Ne(xt) if (y � xt) xt := y8y 2 Ns(xt) if (y � xt) xt := y8y 2 N3(xt) if (y � xt) xt := ywhile (xt � xt�1)return xtend procedureNote that there are two possibilities for updating thebest solution when searching in a particular neighbour-hood. The �rst one, called best-updating, consists of search-ing the best solution y� in the entire neighbourhood. If itis better than our current solution x, then replace x by y�.The second one, called better-updating, consists of replacingx during the local search whenever the current neighbourgenerated yi is better than x. In this case, the subsequent\neighbour" yi+1 is obtained from the new solution x, andhence does not belong to the initial neighbourhood. Better-updating is used in our implementation because it gener-ally provides superior results, as the number of solutions\tried" in each local search is larger. The notation usedabove, in the procedure Local Search, is therefore slightlymisleading.

3III. Niche searchEvolutionary algorithms function by maintaining a set ofsolutions, generally called a population, and making thesesolutions evolve through operations that mimic the naturalevolution: reproduction and selection of the �ttest. Someof these operators where customised for the concrete classof problems that we are dealing with in this paper; we focuson each of them in following sections.Niche search is an evolutionary algorithm where the to-tal population is grouped into separate niches, which evolveindependently for some generations. The claim is that thisway several more localised searches are done at the sametime, inside each of the niches; we hence expect to keep agood compromise between intensi�cation of the search anddiversi�cation of the population. This method has somesimilarities with the one described in [6], where competingsubpopulations play a role similar to niches in our algo-rithm.Niches are subject to competition between them. Thebad niches (i.e., those which have worse populations) tendto extinguish: they are replaced by new ones, which areformed by elements selected from a \good" niche and theextinguishing one.The representation of a solution in the evolutionary al-gorithm is the same used for the local search methods, de-scribed in section I-A; this di�ers from most of the geneticalgorithms, where normally bitstrings are used (see e.g. [7]).A. MutationThe mutation operator that we have devised for thisproblem consists on selecting a subpath inside the completepath of one of the distributors, removing it, and insertingit into the path of another distributor. This way we expectthat after mutation many of the (probably good) subpathsof the original genome will be kept in the mutant.In niche search there are two parameters controlling mu-tation: intensity and probability of mutation. The prob-ability of occurrence of mutation determines if it actuallyoccurs or not; the intensity of the mutation determines theimportance of the changes induced by this operator, i.e.,the size of the subpath (the number of its nodes) that isto be removed from one distributor's path, and inserted inanother one's.Suppose for example that we have an instance with 10nodes and two distributors. Our solution could be:[0 1 2 3 4 5] [0 6 7 8 9 10]If the subpath for mutation is [7 8 9], one solution thatcould potentially be obtained is[0 1 2 3 7 8 9 4 5] [0 6 10]B. CrossoverIn evolutionary algorithms crossover always means to op-erate on two solutions of a given problem (the parents) toproduce a third one (their descendent).One of the philosophical ideas motivating the crossoveroperation is that when two solutions are very similar, theo�spring resulting from crossover between them should also

resemble them. In particular, two identical solutions shouldbe able to produce a single o�spring, identical to them.The aim is to be able to somehow make the search regionmore concentrated in \good" subregions, as the evolution-ary process goes on.We have devised a speci�c version of this operator to thisrouting problem. It consists of the following: take somesubpaths of one of the solutions; then remove all the nodesin these subpaths from the other solution; �nally, randomlyinsert all the subpaths in the second solution, producinganother feasible solution. The aim is to keep many of thesubpaths of the parents unchanged in the o�spring.More concretely, what we do is to select a subpath in oneof the parents and insert it on the other parent in such away that the arc connecting the subpath to that solutionis kept. Suppose for example that the subpath to insert ina given solution is [1 2 3]; then, we start searching the arcending in node 1 in that solution. Admitting that this isthe arc [. . . 5 1 . . .], the o�spring produced would have thispath changed to [. . . 5 1 2 3 . . .].As another example, consider the 10-node 2-distributorinstance again. If we are given the solutionsx1 = [0 1 2 3 4 5] [0 6 7 8 9 10]x2 = [0 1 3 5 7 9] [0 2 4 6 8 10]one possible subpath to choose at the crossover could be[2 3 4] from solution x1. We search for the arc ending innode 2 in the solution x2, which is the arc [0 2 . . .] fromthe second distributor. We then remove the nodes 2, 3 and4 from x2, obtainingx2 = [0 1 5 7 9] [0 6 8 10]Now we are ready to insert the subpath, obtaining:x2 = [0 1 5 7 9] [0 2 3 4 6 8 10]As with mutation, niche search has two parameters con-trolling the crossover: one determines the probability ofoccurrence, and the other sets the intensity of this opera-tion. The intensity determines the number of crossovers toperform and the size of the subpaths for each of them.C. Local searchIn our implementation we have decided to always binda (probably non locally-optimal) new solution obtained bya genetic operation (crossover and mutation) into a localoptimum. This means that a local search is performedevery time a new individual is generated by the geneticpart of the algorithm. The procedure for the generation ofa new element is, hence:select parents (p1, p2)Procedure Reproduce(p1; p2)create son s := crossover(p1, p2) Start with crossover (section III-B).s0 := mutation(s) Mutate the new solution (section III-A).x := Local Search(s0) We �nish the generation of the new elementperforming a local search procedure, starting at solution s0 (section II).return xend procedure

4D. Selection in each niche: rank-based �tnessesAs explained in section I-B, there are two goals to achievein this problem: �rstly, try to achieve an objective as goodas possible; then, if the solution is degenerated, choose theone with the smallest average distribution time. This moti-vates to have the selection of the individuals that are ableto reproduce at each generation based on their ranking,according to the two goals described on that section.In niche search there is a parameter of each niche, calledthe selectivity, which controls the probability of selectionof each individual in relation to their competitors. If thisparameter is very low, then the probability of selection ofthe best individuals is only slightly greater than the prob-ability of selection of the worst; if it is high, then the bestindividuals have a much greater probability of selection,what means that the \genetic information" of the worseones is not likely to propagate to the future generations.The way we handle this issue with the Manhattan prob-lem is the following: we give a �tness for each individualbased on its ranking. In a population of n elements, thebest is assigned a �tness of 1 (i.e., n=n), the second-best(n�1)=n, up to the worse, whose �tness is 1=n. We then el-evate this value to a power, greater or equal to zero, whichis the selectivity parameter of the niche1, to obtain thescaled �tness of each individual.The selection is then performed through roulette wheelselection, giving to each individual a probability of selectionproportional to its scaled �tness (see, for example, [8] fora description of roulette wheel selection).E. ElitismElitism determines whether the best solution found so farby the algorithm is kept in the population or not. As men-tioned before, niche search keeps several groups, or niches,evolving with some independence. Each of these groupsmay be elitist (keeping its best element in its population)or not. Elitism generally intensi�es the search in the regionof the best solution.Our objectives are two fold: we want the search to beas deep as possible around good regions, but we do notwant to neglect other possible regions. The strategy thatwe devised for accomplishing this is the following: nicheswhose best individual is di�erent of the best individual ofother niches are elitist. When several niches have an iden-tical best individual (and this occurs frequently), only oneof them is elitist. With this strategy we hope to have anintensi�ed search on regions with good solutions, and atthe same time enforce some degree of diversi�cation.F. Niche search core algorithmWe summarise now the main steps of the functioning ofthe niche search algorithm. This is the kernel algorithm,which drives the population operations making use of thesolution representation and genetic operators described in1This parameter may change with the phase of evolution; generally,it is low at the beginning of the evolutionary process and high at theend, thus increasing the selectivity stress with time.

the preceding sections. As we said before, niche searchis characterised by evolution in two layers: in the higherlayer, there is the evolution of niches, subject to competi-tion between them. Each iteration of this process is calleda niche generation, or simply a generation . In the lowerlayer, the individuals that compose each niche evolve insideit, competing with other individuals of the niche. Each it-eration of this lower layer process is called an individual'sgeneration, or a subgeneration.The code describing the evolution of the set of niches, inwhat we call a niche generation, is presented below.set t := 0 Start with an initial time.niches(t) = CreateNiches(t) Create the desired number of niches for therun.InitParameters(niches(t)) Randomly initialise the parameters thatcharacterise each niche: crossover probability and intensity, mutation probabilityand intensity, etc.InitialisePopulation(niches(t)) Randomly initialise the population of eachniche.Evaluate(niches(t)) Evaluate the �tness of all the niches in the initialpopulation. For evaluating a niche, we used the �tness of its best element (otherstrategies are also possible).iterate Start evolution.Breed(niches(t)) Create a new generation of individuals in each of the niches,through the lower layer evolution process described below.Evaluate(niches(t)) Evaluate the new niches.weak(t) := SelectWeak(niches(t)) Select the niches that will extinguish.strong(t) := SelectStrong(niches(t)) Select the niches that will be usedfor generating new niches.newniches(t) := Recombination(weak(t),strong(t)) Create a new nichefor replacing each of the extinguishing ones. The recombination strategy used isto create a population formed of the union of the weak niche with a strong one.Then, replace the individuals of the weak niche by a selection of the bestindividuals from that population.InitParameters(newniches(t)) Assign random parameters to created niches.Evaluate(newniches(t)) Evaluate the new niches.Extinguish(weak(t), niches(t)) Remove the weak niches from thepopulationInsert(newniches(t), niches(t)) and include the newly created ones.niches(t+1) := niches(t)t := t + 1 Increase the time counter.until Terminated() Termination criteria: number of generations completed.display solution Solution is the best individual found.Notice that all the parameters that characterise eachniche (selectivity, mutation intensity and probability, etc.)are determined exogenously and randomly. The (random)values of the mutation intensity and of the crossover in-tensity are multiplied by a value, which linearly decreaseswith the generations passed, being 1 at the beginning and0 at the end; the selectivity is multiplied by a value, whichlinearly increases with the generations past, being 0 at thebeginning and 1 at the end. The aim of this is to forcethe population to be more and more homogeneous, as thenumber of generations increases (and solutions are hope-fully closer to the optimum).We now turn to the evolution of the individuals insideeach of the niches. Pseudo-programming code describinghow individuals breed at each generation of the niche evo-lution (i.e., describing what a subgeneration is) is presentedhere. Notice that this process is repeated for each of theniches, at each niche generation.Procedure Breed(niches(t))for all niche in niches(t) do (t is the niche generation counter).g := 0 Initialise the \subgeneration" counter.

5population(g) := niche Set the reference population: (only) the elements ofthe niche that is now breeding.iterate Start evolution.for all element in o�spring(g) dop1 = Selection(population(g)) Select parents for reproductionp2 = Selection(population(g)) (in our implementation through roulettewheel selection).element := Reproduce(p1; p2) Create the o�spring using the operatorsdone described in (section III-C).Evaluate(o�spring(g)) Evaluate the objective of all the individuals in theniche's population. Scale to obtain the �tnesses (section III-D).population(g+1) := o�spring(g) Future population is the o�spring.g := g + 1 Increase the subgeneration counter.until Terminated() Termination criteria: maximum subgenerations achieved,or best individual of current population is not better than that of lastsubgeneration's (and minimum subgenerations are not achieved yet).niche := population(g) Update niche's population. This niche is now readydone to start competition with the others.end procedure IV. Numerical resultsA. The problem instanceOne instance of this problem has been de�ned in [1].In this instance, we are given the coordinates of 120 sub-scribers of a newspaper, located in the city of Manhattan,and the coordinates of the depot. The aim is to allocatethe nodes to 4 newspaper distributors, for optimising theobjective of the problem and the subsequent goal.B. Random-start local searchThe initial solutions for random-start local search wereobtained as follows: randomly choose one of the nodes tovisit on the map (from those which are not yet assigned),and randomly assign it to a distributor.We have made some experiments with the several com-binations of searching the neighbourhoods de�ned in sec-tion II. We also tried a random composite neighbourhood,where the order of searching each of the neighbourhoodsis randomly determined at each iteration. The motivationfor implementing it was to provide a more robust compositecomposite local search method, but it turned out that theresults obtained were considerably worse than any of theother combinations. This result is quite surprising, as onecould imagine that a random choice of the neighbourhoodwould widen the composite neighbourhood.The composite neighbourhood which provided better re-sults was Np!Ne!Ns!N3; we have hence decided toinclude it in the niche search.C. Niche searchFor the purpose of comparing niche search with localsearch, we have divided the results into two series: onein which niche search performs the same amount of localsearches that were performed in the random-start tests,and another where the computational time is identical. No-tice that local search tends to take much less time insideniche search, because the number of iterations required to\stabilise" the solution (i.e., obtain no further improve-ments through local search) is smaller. The reason for this

is that, as we often start the local search from a good so-lution, it is easier to reach the point where it produces nofurther improvement.Previous experiments with niche search have shown thatsmall populations and a small number of niches tend toprovide a good compromise between robustness and com-putational requirements.The number of niches and the pop-ulation of each niche that we used for obtaining the resultsdescribed in this section are, hence, relatively small. Foran increased reliability, a larger number of these should beadopted (especially a larger number of niches, as this wouldstrongly diminish the probability of getting stuck in a localoptimum).Identical number of local searches For this series of runs,we have tuned the algorithm's parameters in such a waythat the number of local searches (i.e., the total numberof individuals generated) is the same used for testing localsearch (section IV-B).These results show a clear improvement over random-started local search. The average solution found by nichesearch, 1223.4, is much superior to the one found by purelocal search (1271.3), the improvement being about 3.9%.For performing about 2500 local searches inside nichesearch, we have used 5 niches, each composed of 3 indi-viduals (hence a total population of 15 individuals), whichwe made evolve for 25 generations, inside which each nichecould produce from 5 subgenerations (if no improvement ismade after the 5th subgeneration) to 10 (if all subgenera-tions lead to improvements).Identical computational time For this series of runs, wehave tuned the algorithm's parameters in such a way thatthe computational time required is identical to the one thatwas used in the series of random start local search (this im-plies that the number of local searches performed in nichesearch is greater than those performed in random start lo-cal search). TABLE ISummary of results obtained for 10 independent runs.Algorithm Distribution Mean # Meantime local CPUt(x�) searches time (s)Random start best 1247local search mean 1271 2500 4365worst 1297Niche search best 1205(same # local searches) mean 1223 2484 1374worst 1246Niche search best 1191(same CPU time) mean 1208 7730 3998worst 1225Results obtained here provide a further improvement ofabout 1.2% over the previous section. We arrive to an im-provement over random started local search of about 5.2%,for a slightly smaller computational time. These resultsshow a clear interest in using niche search as a mechanismfor controlling the start solution of local search.For the results described in this section, we have used 5

6niches, each composed of 3 individuals (hence a total popu-lation of 15 individuals). Niches evolved for 75 generations,each having from 5 to 10 subgenerations.We �nish by showing the circuit obtained for the bestsolution found in these runs, in �gure 1.
0

1

2

3

4

5

6

7

8

9

10

1112

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53 54

55

56

57

58
59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93
94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117
118

119

120

Fig. 1. Best solution found in the runs reported: overview of thepaths followed by each of the distributors. Depot is at node 0.V. ConclusionIn this paper we describe a hybrid strategy for solv-ing combinatorial optimisation problems which is obtainedcombining an evolutionary algorithm with local searchmethods. We apply this strategy to tackle the Manhat-tan problem. Although this strategy does not provide anyresults in terms of the closeness to the optimum of the prob-lem we deal with (which, to the best of our knowledge, atthe present time is unknown for the speci�c instance thatwas treated), it does provide interesting results in terms ofachieving good feasible solutions (upper bounds). A com-bination of this strategy with another working on the lowerbound would be of great value, and is certainly an attrac-tive direction for future research.The results obtained by the hybrid strategy show aclear improvement of the combination of evolutionary ap-proaches with local search, which provide a mix of inten-si�cation and diversi�cation procedures in the same algo-rithm. Improvements of the hybrid strategy over randomstart local search provide a measure of the performance ofthe niche search, which may be used for comparison withother evolutionary approaches.The elitist mode implemented proved to be an e�cientdiversi�cation mechanism: we observed that when the bestniches propagated, many times the best individual in sev-eral niches would be the same. But, as between all the

niches with the same best individual only one could be eli-tist, the best element of the others would soon change, andvery often lead to improvements afterwards.The roulette wheel selection based on a measure of theranking was also an important point, as it allowed for con-sidering the two goals of the problem in selection. It wasalso important in coping with the sometimes dramatic dif-ferences that small changes in the structure of the solutionimply in terms of the objective, as well as with the fact thatoften di�erent solutions lead to the same objective value.There are several things that can be done in order toimprove this heuristic, both in the local search strategiesand in the niche search. On the side of the local search, webelieve that the modi�cation that could probably bring bet-ter improvements might be increasing the number of nodesthat distributors can exchange between them; i.e., distrib-utors may be able to exchange subpaths between them,instead of only exchanging nodes. On the side of the nichesearch, there are two modi�cations that we believe may beworthy. The �rst is to allow di�erent niches to run di�erentlocal search methods; for example, each niche might run adi�erent combination of the exploration of the neighbour-hoods de�ned in section II. Another modi�cation, which issomehow related to this one, is to \remunerate" each nichein terms of the improvement that it makes on the solution,instead on doing it in terms of the �tness of its individuals.References[1] CMG, De Telegraaf, and Technische Universiteit Eindhoven,\Verdien f5.000,- met een kantenwijk in Manhattan", (Contestinformation sheet), 1996.[2] Charles Fleurent and Jacques A. Ferland, \Genetic hybridsfor the quadratic assignment problem", in Quadratic Assign-ment and Related Problems, vol. 16 of DIMACS: Series in Dis-crete Mathematics and Theoretical Computer Science. AmericanMathematical Society, 1994.[3] Bernd Freisleben and Peter Merz, \New genetic local searchoperators for the traveling salesman problem", In Voigt et al.[12].[4] Jo~ao P. Pedroso, \Niche search: an evolutionary algorithm forglobal optimisation", In Voigt et al. [12].[5] S. Lin, \Computer solutions to the traveling salesman problem",Bell System Technical Journal, vol. 44, no. 10, pp. 2245{2269,1965.[6] Dirk Shlierkamp-Voosen and Heiz M�uhlenbein, \Strategy adap-tation by competing subpopulations", in Parallel Problem Solv-ing from Nature - PPSN III, Y. Davidor, H.-P. Schwefel, andR. M�anner, Eds., 1994, number 866 in Lecture Notes in Com-puter Science.[7] Sam R. Thangiah, Practical Handbook of Genetic Algorithms:New Frontiers, chapter Vehicle Routing with Time WindowsUsing Genetic Algorithms, Lewis Publishers, 1995.[8] David E. Goldberg, Genetic Algorithms in Search, Optimization& Machine Learning, Addison-Wesley, 1989.[9] Jo~ao P. Pedroso, \Niche search: an application to the man-hattan newspaper problem", Discussion Paper 9765, Centre forOperations Research and Econometrics, Universit�e Catholiquede Louvain, Louvain-la-Neuve, Belgium, 1997.[10] Christos H. Papadimitriou and Kenneth Steiglitz, CombinatorialOptimization: Algorithms and Complexity, Prentice-Hall Inc.,1982.[11] Bruce L. Golden, Gilbert Laporte, and �Eric D. Taillard, \Anadaptive memory heuristic for a class of vehicle routing problemswith minmax objective", Computers & Operations Research, pp.445{452, 1997.[12] Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, andHans-Paul Schwefel, Eds., Parallel Problem Solving from Na-ture - PPSN IV, vol. 1141 of Lecture Notes in Computer Science,Berlin, Germany, 1996. Springer.

