Niche Search: an Application in Vehicle Routing

Joao Pedro Pedroso

Abstract— In this paper we describe a hybrid strategy for
solving combinatorial optimisation problems, obtained by
coupling a local search method to an evolutionary algorithm,
and we provide an application to a particular variant of the
vehicle routing problem.

The local search method has been devised specifically for
this class of problems. It is based on a composite neighbour-
hood, which is searched iteratively up to the point where no
further improvements can be made.

The evolutionary structure is the niche search, an algo-
rithm based on the evolution of several independent niches.
Niches whose individuals’ fitness is good remain, and the
others tend to be replaced. The separation of the population
into niches allows for a good compromise between intensive
search (inside each niche) and diversification (through the
separation between the niches).

We also describe how we integrate specific problem knowl-
edge into an evolutionary structure, in order to achieve a
high performance optimisation algorithm. All the steps that
we consider necessary are described in detail: finding an
appropriate representation, determining what is a relevant
neighbourhood, setting up a local search method and finally
integrating the local search into an evolutionary algorithm.

I. OVERVIEW

The problem handled in this paper is a vehicle routing
variant that has been posed in [1], referred to as the Man-
hattan Newspaper, or Telegraaf, Problem. It consists of
the following: suppose we have a newspaper depot at some
location in a city, a set of distributors, and a set of nodes
of subscribers where the newspapers should be delivered.
The objective is to distribute a newspaper to each of the
subscribers, and minimise the time of delivery to the last-
served subscriber (or, equivalently, the total distance ran
by the distributor who is assigned the longest path).

When two or more solutions have the same objective, the
one with the smallest average distribution time is preferred.

Distances between nodes in the city are given by the
sum of the vertical distance with the horizontal distance
between the nodes (i.e., the city has only vertical and hor-
izontal streets).

These characteristics make this problem different of
other vehicle routing problems. In this paper we describe
the approach that we have devised for tackling it, which
consists on heuristics that combine local search with global
search methods. These are intended to, respectively, inten-
sify and diversify the search. Hence, local search routines
find a local optimum for a given initial solution, whilst
global search supplies the initial solutions where to perform
local search. The local search routines have been designed
specifically for this problem. They include the definition of
an appropriate neighbourhood and a procedure for itera-
tively exploring it; we describe them in section II. Similar

J. P. Pedroso is a researcher at the Riken Institute, Wako-shi,
Japan. E-mail: jpp@brain.riken.go.jp.

ways for dealing with combinatorial optimisation problems
have been described, for example, in [2] and in [3]. Global
search is based on the niche search algorithm [4], and is
described in section III.

A. Representation of the solutions

The map of the city is represented by a set of nodes
M ={0,1,...,S}, where 0 denotes the depot, and S is the
number of subscribers. Each node n € M is characterised
by its coordinates (zn, yn)-

The set of distributors is represented by D = {1, ..., D},
where D is the total number of distributors used.

We represent a solution z of the problem by a set of
vectors, £ = {p1,...,pp}, where the elements of a given
vector p; are the cities that the distributor ¢ visits, in the
order of the visit. The dimension of each of these vectors
is n(7), the total number of nodes visited by distributor ¢
(excluding the depot); hence, p; = [pig, - - -, Pi, ;|-

For the purpose of the heuristics discussed in this paper,
we have relied exclusively on feasible solutions. A solu-
tion is feasible iff all the subscribers (i.e., all the nodes
in the map) are visited exactly once by a distributor, and
all the distributors start at the depot. More formally, if
we consider a problem with S subscribers and D distribu-
tors, we define the set of feasible solutions F as the set of
x ={p1,...,pp} such that:

e pi,=0 VieD

* Di; GM\{O} ViED, .7 € {laan(l)}

e Vs#£0eM 3i,j) : i€D, je{l,...,n(i)}, pi; =s
For example, a vector py = [0,4,2,5] in the solution set
means that distributor 2 starts at the depot (node 0),
and supplies the subscribers at nodes 4,2 and 5, in this
order. The total time taken by this distributor is hence
t; = dist(0,4) + dist(4, 2) + dist(2, 5), where the distances
dist(n, m) are the sum of the absolute values of the differ-
ence of the coordinates: dist(n,m) = |z, —Tm|+ |Yn — Um|-

B. Definition of the objective

The objective of this problem is to minimise the time of
serving the subscriber which is served the latest. The time
of serving the latest of the subscribers in this solution is
given by:

n(i)
t(iL’) = I{éa‘,g(tl) t; = ZdiSt(pij—17pij)

j=1
where #; is the time at which the subscriber p;, , is served.
As mentioned above, there is another goal in this prob-
lem: to select, from the solutions which lead to the best
objective (if there are more than one), the one with the
smallest average distribution time. The average time of

serving for a solution z is given by

& dist(piy_. , piy) (n6) = +1)
a(z) = Z Z 5

i€D j=1
For the purposes of the heuristic that we implemented, we
have relied on a classification of the individuals based on
these two goals. If we denote the maximum of the dis-
tribution times of a solution x by t(z), and the average
distribution time by a(z), solution 1 is said to be better
than zo (21 < z2) iff:
. t(iL’l) < t(iL'Q), or
o t(r1) = t(z2) and a(z1) < a(z2).

II. LOCAL SEARCH

The local search heuristic that we have devised for this
problem comprises the search of several types of neighbour-
hoods, which is performed iteratively until no further im-
provement is obtained.

The neighbourhoods devised for this problem are divided
into two main categories: exchanges of nodes between two
distributors, and operations on the path of each of the dis-
tributors. In the first category, we consider node pushing
from one distributor to another and node exchanges be-
tween two distributors. In the second one, we consider 2-
and 3-change neighbourhoods, and 2-swap neighbourhood
within the path of each of the distributors.

All the neighbourhoods that we consider in this paper
are defined on the set F of feasible solutions.

Node pushing neighbourhood, is defined by pushing nodes
from one distributor to another: N,(z) = {y : y € F
and y can be obtained from z as follows: given the paths
pi,p; € x of any two distributors ¢ and j of x, remove one
node p;,,a > 0 from ¢ and insert it in the path of j}.

Node exchange neighbourhood, allows node exchanges be-
tween two distributors ¢ and j: Ne(z) = {y : y € F
and y can be obtained from z as follows: given the paths
pi,p; € x of any two distributors ¢ # j in z, consider

the ath node from path i and the pth node from path j,
a,b > 0; then, swap nodes p;, with pj, }.

2-change neighbourhood for this routing problem is an
adaptation of the 2-change neighbourhood defined by
Lin [5] for the travelling salesman problem. The idea is
to operate on the paths of each of the distributors inde-
pendently, by removing two edges and replacing them with
another two (different) edges. It is defined as: No(z) =
{y : y € F and y can be obtained from z as follows: given
a path p; € =z, defining the set of nodes A visited by a
distributor i, remove two edges from this path and replace
them with two other edges with both endpoints on N'}.

3-change neighbourhood is an extension of the preced-
ing one (Ny C Nj), where 3 arcs are removed and re-
placed. It also corresponds to an adaptation of the 3-
change neighbourhood defined in [5] to this routing prob-
lem. N3(z) = {y : y € F and y can be obtained from z
as follows: given a path p; € z, defining the set of nodes
N visited by a distributor ¢, remove three edges from this

path and replace them with three other edges with both
endpoints on N}

2-swap neighbourhood operates on the paths of each of
the distributors independently, by exchanging the position
of 2 nodes of the path: Ng(z) = {y :y € F and y can be
obtained from z as follows: given a path p; € z, defining
the path of a distributor ¢, swap the node at position a > 0,
p;, with the node at position b > 0, p;, }.

A. Iterating

Local search is performed by combining the neighbour-
hoods described above. Given a starting (feasible) solu-
tion, each neighbouring region is explored, all the improv-
ing solutions being accepted. Search proceeds by iterating
through these neighbourhoods, and repeating until no fur-
ther improvement is achieved.

Improvement in this context means that we can find a
solution y in some neighbourhood of the current solution,
x, such that y < x (and hence y replaces z).

As there are multiple possibilities of combining the
search on each of these neighbourhoods, we had to deter-
mine a strategy which would, from one side, provide as
good as possible local optima, and from the other side be
parsimonious in what concerns the computational burden.

We have made some preliminary tests using random-
start local search, and more specific tests at the time of
their integration in the evolutionary algorithm. The com-
plete local search strategy that appeared to perform best,
starting with purely random feasible solutions, is the fol-
lowing:
get a feasible solution zq
Procedure Local_Search(zo)
t=0
do Start the iterative procedure.
t=t+1
Tt = Te—1
Vy € Np(ay) if (y < ®t) ot 1=y Search all neighbourhoods in a given order.
Vy € Neoy) if (y <) 20 1=y
Vy € Ny(o,) if (y <) 21 1=y
Yy € N3(gy) if (y <zt) Tt :=y
while (z: < x¢—1)
return x¢
end procedure

Note that there are two possibilities for updating the
best solution when searching in a particular neighbour-
hood. The first one, called best-updating, consists of search-
ing the best solution y* in the entire neighbourhood. If it
is better than our current solution z, then replace x by y*.
The second one, called better-updating, consists of replacing
z during the local search whenever the current neighbour
generated y; is better than z. In this case, the subsequent
“neighbour” y;,1 is obtained from the new solution z, and
hence does not belong to the initial neighbourhood. Better-
updating is used in our implementation because it gener-
ally provides superior results, as the number of solutions
“tried” in each local search is larger. The notation used
above, in the procedure Local_Search, is therefore slightly
misleading.

III. NICHE SEARCH

Evolutionary algorithms function by maintaining a set of
solutions, generally called a population, and making these
solutions evolve through operations that mimic the natural
evolution: reproduction and selection of the fittest. Some
of these operators where customised for the concrete class
of problems that we are dealing with in this paper; we focus
on each of them in following sections.

Niche search is an evolutionary algorithm where the to-
tal population is grouped into separate niches, which evolve
independently for some generations. The claim is that this
way several more localised searches are done at the same
time, inside each of the niches; we hence expect to keep a
good compromise between intensification of the search and
diversification of the population. This method has some
similarities with the one described in [6], where competing
subpopulations play a role similar to niches in our algo-
rithm.

Niches are subject to competition between them. The
bad niches (i.e., those which have worse populations) tend
to extinguish: they are replaced by new ones, which are
formed by elements selected from a “good” niche and the
extinguishing one.

The representation of a solution in the evolutionary al-
gorithm is the same used for the local search methods, de-
scribed in section I-A; this differs from most of the genetic
algorithms, where normally bitstrings are used (see e.g. [7]).

A. Mutation

The mutation operator that we have devised for this
problem consists on selecting a subpath inside the complete
path of one of the distributors, removing it, and inserting
it into the path of another distributor. This way we expect
that after mutation many of the (probably good) subpaths
of the original genome will be kept in the mutant.

In niche search there are two parameters controlling mu-
tation: intensity and probability of mutation. The prob-
ability of occurrence of mutation determines if it actually
occurs or not; the intensity of the mutation determines the
importance of the changes induced by this operator, i.e.,
the size of the subpath (the number of its nodes) that is
to be removed from one distributor’s path, and inserted in
another one’s.

Suppose for example that we have an instance with 10
nodes and two distributors. Our solution could be:

[012345][0678910]

If the subpath for mutation is [7 8 9], one solution that
could potentially be obtained is

01237 8945][06 10]

B. Crossover

In evolutionary algorithms crossover always means to op-
erate on two solutions of a given problem (the parents) to
produce a third one (their descendent).

One of the philosophical ideas motivating the crossover
operation is that when two solutions are very similar, the
offspring resulting from crossover between them should also

resemble them. In particular, two identical solutions should
be able to produce a single offspring, identical to them.
The aim is to be able to somehow make the search region
more concentrated in “good” subregions, as the evolution-
ary process goes on.

We have devised a specific version of this operator to this
routing problem. It consists of the following: take some
subpaths of one of the solutions; then remove all the nodes
in these subpaths from the other solution; finally, randomly
insert all the subpaths in the second solution, producing
another feasible solution. The aim is to keep many of the
subpaths of the parents unchanged in the offspring.

More concretely, what we do is to select a subpath in one
of the parents and insert it on the other parent in such a
way that the arc connecting the subpath to that solution
is kept. Suppose for example that the subpath to insert in
a given solution is [1 2 3]; then, we start searching the arc
ending in node 1 in that solution. Admitting that this is
the arc [...5 1 ...], the offspring produced would have this
path changed to [...5123 ...].

Asg another example, consider the 10-node 2-distributor
instance again. If we are given the solutions

21 =[012345][067809 10]
2o =[013579][02468 10]

one possible subpath to choose at the crossover could be
[2 3 4] from solution z;. We search for the arc ending in
node 2 in the solution z», which is the arc [0 2 ...] from
the second distributor. We then remove the nodes 2, 3 and
4 from x5, obtaining

22 =[01579][06 810]
Now we are ready to insert the subpath, obtaining:
22 =1001579][023 468 10]

As with mutation, niche search has two parameters con-
trolling the crossover: one determines the probability of
occurrence, and the other sets the intensity of this opera-
tion. The intensity determines the number of crossovers to
perform and the size of the subpaths for each of them.

C. Local search

In our implementation we have decided to always bind
a (probably non locally-optimal) new solution obtained by
a genetic operation (crossover and mutation) into a local
optimum. This means that a local search is performed
every time a new individual is generated by the genetic
part of the algorithm. The procedure for the generation of
a new element is, hence:
select parents (p1, p2)
Procedure Reproduce(p1,p2)
create son s := crossover(pi, p2)
s’ := mutation(s)
z := Local_Search(s’) We finish the generation of the new element

performing a local search procedure, starting at solution s' (section I1).

return z
end procedure

Start with crossover (section I1I-B).

Mutate the new solution (section IlI-A).

D. Selection in each niche: rank-based fitnesses

As explained in section I-B, there are two goals to achieve
in this problem: firstly, try to achieve an objective as good
as possible; then, if the solution is degenerated, choose the
one with the smallest average distribution time. This moti-
vates to have the selection of the individuals that are able
to reproduce at each generation based on their ranking,
according to the two goals described on that section.

In niche search there is a parameter of each niche, called
the selectivity, which controls the probability of selection
of each individual in relation to their competitors. If this
parameter is very low, then the probability of selection of
the best individuals is only slightly greater than the prob-
ability of selection of the worst; if it is high, then the best
individuals have a much greater probability of selection,
what means that the “genetic information” of the worse
ones is not likely to propagate to the future generations.

The way we handle this issue with the Manhattan prob-
lem is the following: we give a fitness for each individual
based on its ranking. In a population of n elements, the
best is assigned a fitness of 1 (i.e., n/n), the second-best
(n—1)/n, up to the worse, whose fitness is 1/n. We then el-
evate this value to a power, greater or equal to zero, which
is the selectivity parameter of the niche!, to obtain the
scaled fitness of each individual.

The selection is then performed through roulette wheel
selection, giving to each individual a probability of selection
proportional to its scaled fitness (see, for example, [8] for
a description of roulette wheel selection).

E. FElitism

Elitism determines whether the best solution found so far
by the algorithm is kept in the population or not. As men-
tioned before, niche search keeps several groups, or niches,
evolving with some independence. Each of these groups
may be elitist (keeping its best element in its population)
or not. Elitism generally intensifies the search in the region
of the best solution.

Our objectives are two fold: we want the search to be
as deep as possible around good regions, but we do not
want to neglect other possible regions. The strategy that
we devised for accomplishing this is the following: niches
whose best individual is different of the best individual of
other niches are elitist. When several niches have an iden-
tical best individual (and this occurs frequently), only one
of them is elitist. With this strategy we hope to have an
intensified search on regions with good solutions, and at
the same time enforce some degree of diversification.

F. Niche search core algorithm

We summarise now the main steps of the functioning of
the niche search algorithm. This is the kernel algorithm,
which drives the population operations making use of the
solution representation and genetic operators described in

I This parameter may change with the phase of evolution; generally,
it is low at the beginning of the evolutionary process and high at the
end, thus increasing the selectivity stress with time.

the preceding sections. As we said before, niche search
is characterised by evolution in two layers: in the higher
layer, there is the evolution of niches, subject to competi-
tion between them. Each iteration of this process is called
a niche generation, or simply a generation . In the lower
layer, the individuals that compose each niche evolve inside
it, competing with other individuals of the niche. Each it-
eration of this lower layer process is called an individual’s
generation, or a subgeneration.

The code describing the evolution of the set of niches, in
what we call a niche generation, is presented below.
sett:=0 Start with an initial time.

niches(t) = CreateNiches(t) Create the desired number of niches for the

run.

InitParameters(niches(t)) Randomly initialise the parameters that
characterise each niche: crossover probability and intensity, mutation probability
and intensity, etc.

InitialisePopulation(niches(t)) Randomly initialise the population of each

niche.

Evaluate(niches(t)) Evaluate the fitness of all the niches in the initial
population. For evaluating a niche, we used the fitness of its best element (other

strategies are also possible).
iterate Start evolution.

Breed(niches(t)) Create a new generation of individuals in each of the niches,
through the lower layer evolution process described below.

Evaluate(niches(t))
weak(t) := SelectWeak(niches(t))
strong(t) := SelectStrong(niches(t))

Evaluate the new niches.
Select the niches that will extinguish.

Select the niches that will be used
for generating new niches.

newniches(t) := Recombination(weak(t),strong(t)) Create a new niche
for replacing each of the extinguishing ones. The recombination strategy used is
to create a population formed of the union of the weak niche with a strong one.
Then, replace the individuals of the weak niche by a selection of the best
individuals from that population.

InitParameters(newniches(t)) Assign random parameters to created niches.
Evaluate(newniches(t))
Extinguish(weak(t), niches(t))

Evaluate the new niches.

Remove the weak niches from the
population

Insert(newniches(t), niches(t)) and include the newly created ones.

niches(t+1) := niches(t)

t:=t+1

until Terminated()

display solution

Increase the time counter.
Termination criteria: number of generations completed.
Solution is the best individual found.

Notice that all the parameters that characterise each
niche (selectivity, mutation intensity and probability, etc.)
are determined exogenously and randomly. The (random)
values of the mutation intensity and of the crossover in-
tensity are multiplied by a value, which linearly decreases
with the generations passed, being 1 at the beginning and
0 at the end; the selectivity is multiplied by a value, which
linearly increases with the generations past, being 0 at the
beginning and 1 at the end. The aim of this is to force
the population to be more and more homogeneous, as the
number of generations increases (and solutions are hope-
fully closer to the optimum).

We now turn to the evolution of the individuals inside
each of the niches. Pseudo-programming code describing
how individuals breed at each generation of the niche evo-
lution (i.e., describing what a subgeneration is) is presented
here. Notice that this process is repeated for each of the
niches, at each niche generation.

Procedure Breed(niches(t))
for all niche in niches(t) do
g:=0

(t is the niche generation counter).
Initialise the “subgeneration” counter.

population(g) := niche Set the reference population: (only) the elements of

the niche that is now breeding.
iterate Start evolution.
for all element in offspring(g) do
p1 = Selection(population(g))

p2 = Selection(population(g))

Select parents for reproduction

(in our implementation through roulette
wheel selection).
element := Reproduce(pi,p2) Create the offspring using the operators
done described in (section 111-C).
Evaluate(offspring(g)) Evaluate the objective of all the individuals in the
niche’s population. Scale to obtain the fitnesses (section 111-D).
population(g+1) := offspring(g)
gi=g+1
until Terminated() Termination criteria: maximum subgenerations achieved,
or best individual of current population is not better than that of last
subgeneration’s (and minimum subgenerations are not achieved yet).

niche := population(g)
done
end procedure

Future population is the offspring.
Increase the subgeneration counter.

Update niche’s population. This niche is now ready
to start competition with the others.

IV. NUMERICAL RESULTS
A. The problem instance

One instance of this problem has been defined in [1].
In this instance, we are given the coordinates of 120 sub-
scribers of a newspaper, located in the city of Manhattan,
and the coordinates of the depot. The aim is to allocate
the nodes to 4 newspaper distributors, for optimising the
objective of the problem and the subsequent goal.

B. Random-start local search

The initial solutions for random-start local search were
obtained as follows: randomly choose one of the nodes to
visit on the map (from those which are not yet assigned),
and randomly assign it to a distributor.

We have made some experiments with the several com-
binations of searching the neighbourhoods defined in sec-
tion II. We also tried a random composite neighbourhood,
where the order of searching each of the neighbourhoods
is randomly determined at each iteration. The motivation
for implementing it was to provide a more robust composite
composite local search method, but it turned out that the
results obtained were considerably worse than any of the
other combinations. This result is quite surprising, as one
could imagine that a random choice of the neighbourhood
would widen the composite neighbourhood.

The composite neighbourhood which provided better re-
sults was N, =+ N, = N; — N3; we have hence decided to
include it in the niche search.

C. Niche search

For the purpose of comparing niche search with local
search, we have divided the results into two series: one
in which niche search performs the same amount of local
searches that were performed in the random-start tests,
and another where the computational time is identical. No-
tice that local search tends to take much less time inside
niche search, because the number of iterations required to
“stabilise” the solution (i.e., obtain no further improve-
ments through local search) is smaller. The reason for this

is that, as we often start the local search from a good so-
lution, it is easier to reach the point where it produces no
further improvement.

Previous experiments with niche search have shown that
small populations and a small number of niches tend to
provide a good compromise between robustness and com-
putational requirements.The number of niches and the pop-
ulation of each niche that we used for obtaining the results
described in this section are, hence, relatively small. For
an increased reliability, a larger number of these should be
adopted (especially a larger number of niches, as this would
strongly diminish the probability of getting stuck in a local
optimum).

Identical number of local searches For this series of runs,
we have tuned the algorithm’s parameters in such a way
that the number of local searches (i.e., the total number
of individuals generated) is the same used for testing local
search (section IV-B).

These results show a clear improvement over random-
started local search. The average solution found by niche
search, 1223.4, is much superior to the one found by pure
local search (1271.3), the improvement being about 3.9%.

For performing about 2500 local searches inside niche
search, we have used 5 niches, each composed of 3 indi-
viduals (hence a total population of 15 individuals), which
we made evolve for 25 generations, inside which each niche
could produce from 5 subgenerations (if no improvement is
made after the 5th subgeneration) to 10 (if all subgenera-
tions lead to improvements).

Identical computational time For this series of runs, we
have tuned the algorithm’s parameters in such a way that
the computational time required is identical to the one that
was used in the series of random start local search (this im-
plies that the number of local searches performed in niche
search is greater than those performed in random start lo-
cal search).

TABLE T
SUMMARY OF RESULTS OBTAINED FOR 10 INDEPENDENT RUNS.

Algorithm Distribution | Mean # Mean
time local CPU
t(z*) searches | time (s)
Random start best 1247
local search mean 1271 2500 4365
worst 1297
Niche search best 1205
(same # local searches) | mean 1223 2484 1374
worst 1246
Niche search best 1191
(same CPU time) mean 1208 7730 3998
worst 1225

Results obtained here provide a further improvement of
about 1.2% over the previous section. We arrive to an im-
provement over random started local search of about 5.2%,
for a slightly smaller computational time. These results
show a clear interest in using niche search as a mechanism
for controlling the start solution of local search.

For the results described in this section, we have used 5

niches, each composed of 3 individuals (hence a total popu-
lation of 15 individuals). Niches evolved for 75 generations,
each having from 5 to 10 subgenerations.

We finish by showing the circuit obtained for the best
solution found in these runs, in figure 1.

e
P /'/ / 7—/ =

T
|

1

U f
I

| T ﬁ
WNs

8 ’ ﬁ
\/n\\,fc_/)
Fig. 1. Best solution found in the runs reported: overview of the

paths followed by each of the distributors. Depot is at node 0.

V. CONCLUSION

In this paper we describe a hybrid strategy for solv-
ing combinatorial optimisation problems which is obtained
combining an evolutionary algorithm with local search
methods. We apply this strategy to tackle the Manhat-
tan problem. Although this strategy does not provide any
results in terms of the closeness to the optimum of the prob-
lem we deal with (which, to the best of our knowledge, at
the present time is unknown for the specific instance that
was treated), it does provide interesting results in terms of
achieving good feasible solutions (upper bounds). A com-
bination of this strategy with another working on the lower
bound would be of great value, and is certainly an attrac-
tive direction for future research.

The results obtained by the hybrid strategy show a
clear improvement of the combination of evolutionary ap-
proaches with local search, which provide a mix of inten-
sification and diversification procedures in the same algo-
rithm. Improvements of the hybrid strategy over random
start local search provide a measure of the performance of
the niche search, which may be used for comparison with
other evolutionary approaches.

The elitist mode implemented proved to be an efficient
diversification mechanism: we observed that when the best
niches propagated, many times the best individual in sev-
eral niches would be the same. But, as between all the

niches with the same best individual only one could be eli-
tist, the best element of the others would soon change, and
very often lead to improvements afterwards.

The roulette wheel selection based on a measure of the
ranking was also an important point, as it allowed for con-
sidering the two goals of the problem in selection. It was
also important in coping with the sometimes dramatic dif-
ferences that small changes in the structure of the solution
imply in terms of the objective, as well as with the fact that
often different solutions lead to the same objective value.

There are several things that can be done in order to
improve this heuristic, both in the local search strategies
and in the niche search. On the side of the local search, we
believe that the modification that could probably bring bet-
ter improvements might be increasing the number of nodes
that distributors can exchange between them; i.e., distrib-
utors may be able to exchange subpaths between them,
instead of only exchanging nodes. On the side of the niche
search, there are two modifications that we believe may be
worthy. The first is to allow different niches to run different
local search methods; for example, each niche might run a
different combination of the exploration of the neighbour-
hoods defined in section II. Another modification, which is
somehow related to this one, is to “remunerate” each niche
in terms of the improvement that it makes on the solution,
instead on doing it in terms of the fitness of its individuals.

REFERENCES

[1] CMG, De Telegraaf, and Technische Universiteit Eindhoven,
“Verdien £5.000,- met een kantenwijk in Manhattan”, (Contest
information sheet), 1996.

[2] Charles Fleurent and Jacques A. Ferland, “Genetic hybrids
for the quadratic assignment problem”, in Quadratic Assign-
ment and Related Problems, vol. 16 of DIMACS: Series in Dis-
crete Mathematics and Theoretical Computer Science. American
Mathematical Society, 1994.

[3] Bernd Freisleben and Peter Merz, “New genetic local search
operators for the traveling salesman problem”, In Voigt et al.
[12].

[4] Jodo P. Pedroso, “Niche search: an evolutionary algorithm for
global optimisation”, Tn Voigt et al. [12].

[5] S.Lin, “Computer solutions to the traveling salesman problem”,
Bell System Technical Journal, vol. 44, no. 10, pp. 2245-2269,
1965.

[6] Dirk Shlierkamp-Voosen and Heiz Miihlenbein, “Strategy adap-
tation by competing subpopulations”, in Parallel Problem Solv-
ing from Nature - PPSN III, Y. Davidor, H.-P. Schwefel, and
R. Mianner, Eds., 1994, number 866 in Lecture Notes in Com-
puter Science.

[7] Sam R. Thangiah, Practical Handbook of Genetic Algorithms:
New Frontiers, chapter Vehicle Routing with Time Windows
Using Genetic Algorithms, Lewis Publishers, 1995.

[8] David E. Goldberg, Genetic Algorithms in Search, Optimization
& Machine Learning, Addison-Wesley, 1989.

[9] Jodo P. Pedroso, “Niche search: an application to the man-
hattan newspaper problem”, Discussion Paper 9765, Centre for
Operations Research and Econometrics, Université Catholique
de Louvain, Louvain-la-Neuve, Belgium, 1997.

[10] Christos H. Papadimitriou and Kenneth Steiglitz, Combinatorial
Optimization: Algorithms and Complezity, Prentice-Hall Inc.,
1982.

[11] Bruce L. Golden, Gilbert Laporte, and Eric D. Taillard, “An
adaptive memory heuristic for a class of vehicle routing problems
with minmax objective”, Computers € Operations Research, pp.
445-452, 1997.

[12] Hans-Michael Voigt, Werner Ebeling, Ingo Rechenberg, and
Hans-Paul Schwefel, Eds., Parallel Problem Solving from Na-
ture - PPSN IV, vol. 1141 of Lecture Notes in Computer Science,
Berlin, Germany, 1996. Springer.

