
Numerical solution of Nash and Stackelbergequilibria: an evolutionary approachJo~ao Pedro PedrosoCentre for Operations Research and Econometrics34 Voie du Roman Pays,B-1348 Louvain-la-Neuve, Belgiume-mail: jpp@core.ucl.ac.beAbstract. In this paper we describe evolutionary heuristics for numer-ically solving systems of several, interdependent optimisation problems.They can be used for the solution of some games with simultaneousmoves of the players (Nash equilibria), asynchronous moves (Stackelbergequilibria), or a mix of these situations. The application is possible incases where the presence of non-convexities, integral variables, or otherfactors restrain the use of traditional methods, based on derivatives.The solution of instances of well known economic equilibrium problemswith these algorithms is supplied. The results obtained for these simplecases show potential applications of the strategies, and provide limitedconvergence evidence.1 OverviewApplications of game theory to the simulation of natural processes has beentreated in [6], through an approach there called evolutionary game theory. Inthat text, the assumptions usually made in game theory that players will behaverationally, and according to some criterion of self-interest, are replaced; rational-ity is substituted by the criterion of population dynamics and stability, and selfinterest is replaced by Darwinian �tness. The \solution" to a game is given bywhat is called an evolutionarily stable strategy | which is essentially the sameas an unbeatable strategy, in game theory. The general approach of that bookis to use game theory to model and explain evolutionary processes.The approach that we follow in this text is the inverse one: we aim at usingthe computer simulation of evolutionary processes to model and numericallysolve some game theoretic problems.Evolutionary approaches have successfully been applied to solve a large vari-ety of problems; in particular, successful applications to the numerical solutionof global optimisation problems have been repeatedly reported. In this text wepropose an evolutionary approach to numerically compute equilibria: systemsof interdependent optimisation problems. The algorithms for equilibria compu-tation presented here are deeply based on a method for the solution of globaloptimisation problems. In our implementation we have relied on an evolutionaryalgorithm described in [2], although equivalent methods could be used instead.

We depart from the solution of a single global optimisation problem to focuson heuristics for the solution of Nash equilibria (i.e., equilibria with simultane-ous moves of the intervening players) and Stackelberg equilibria (asynchronousmoves: one agent plays before the other, taking into account its reaction)1. Ex-tension to a mix of the two types of games is presented afterwards. We thenstate some assumptions on the type of games that we aim to solve, and to asuper�cial analysis of the convergence properties.The essential characteristic of our approach is that each of the optimisationproblems, corresponding to the behaviour of a particular agent, is seen as afunction of the strategies of the other players.We conclude by presenting some examples of application to well-known eco-nomic equilibrium problems, for whose solution we have implemented an evo-lutionary computer program. We supply and analyse the numerical results ob-tained for these test problems.2 The algorithms2.1 Nash equilibriaThe motivation for the solution method that we propose to systems of simultane-ous optimisations comes from the observation that, in life, independent evolutionof di�erent species leads to an \optimisation" of the adaptation, or �tness, foreach of the species, to the natural environment; this arises even when the be-haviour of one of the species has a direct in
uence on the behaviour of the others.This fact leads to the assertion that an algorithm that is based on the simulationof life (as is a genetic algorithm), when extended to support the simultaneousexistence of several species, should provide a way to solve equilibria.The principle used in the algorithm that we propose for the computation ofNash equilibria is the following. In a Nash game, each of the players optimisesits utility, or objective, subject to external parameters, which are the strategicvariables of the other players, set up by them. It can, henceforth, be seen as asystem of simultaneous optimisations, which we can solve using a �xed pointiterative method.We start the algorithm by setting up one evolutionary optimisation prob-lem for each of the players in the game, taking the variables of all the otherplayers as �xed. Each of these problems keeps a separate population, that willevolve through selection and reproduction. The series of evolutionary optimisa-tion problems are assembled in a meta-problem, the Nash equilibrium problem.The meta-evolution process starts by randomly initialising the population ofeach of the optimisation problems (i.e., each of the inner evolution processes).An element of the population of each of these problems is (randomly) chosenas the initial move of each player, to which we attribute an evaluation of �1(assuming that we are treating of maximisation problems).1 A Stackelberg game can also be seen as a Nash game with incomplete information;see [1]

An iterative process starts now. A new generation of the population is createdfor the optimisation problem of the �rst player, through selection and the searchoperators generally used for evolutionary algorithms: crossover and mutation.Each of the individuals in the o�spring generation is evaluated, by computingthe objective function of this player subject to the moves announced by all theother players. From this population, the individual with the highest �tness isselected as the new move of the �rst player. A new generation is created thisway for all the other players, and their move updated as above. At the end ofthe �rst meta-generation we have the �rst complete move of the Nash game. Theiterations proceed until all the iterations of the meta-program are accomplished,or until some convergence criteria for the strategic variables is achieved.The solution of the Nash equilibrium is the last strategy obtained in the meta-program. As argued in section 3.1, if certain assumptions hold, the limit of thisprocess when the number of generations tends to in�nity is a Nash equilibrium.See �gure 1 for pseudo code describing the evolution approach for Nash equi-libria computation.t := 0 Start with an initial time.CreateStructure(strategies(t)) Create a structure where to hold the moves of all the players.CreateEvolOptim(nash(t), strategies(t)) Create an evolutionary optimisation problem for each ofthe players. Each of these problems is a function of the strategies structure: its objective depends onthe moves announced for all the other players.RandomInit(nash(t)) Randomly initialise the population of each of these problems.strategies(t) := RandomSelect(nash(t)) Choose randomly the initial move for each of theplayers; this corresponds to a random individual in the population of each evolutionary program.iterate Start the meta-evolution process.t := t+1 update the time counternash(t) := NewGeneration(nash(t-1),strategies(t-1)) Evolve each of the optimisationproblems a generation further.strategies(t) := SelectBest(nash(t)) Update the moves: for every player, select the bestsolution found in the current generation.until Terminated() Termination criteria: time, slack between strategies(t) and strategies(t-1), etc.display solution Solution is the latest move, stored in strategies(t).endFig. 1. Evolutionary algorithm for the computation of Nash equilibria. The problem ofeach of the players is a function of the moves of the other players; the system of thesesimultaneous functions is solved through a �xed-point iteration.Elitism and Nash equilibria As described in [3], for the evolutionary algorithmthat performs the optimisation for each of the Nash players to converge, it mustrely on an elitist mode: the best element in the population should be insertedunchanged in the following generation. Elitism here must be rede�ned. The so-lution of each optimisation problem is parameterised on the solutions announce

by the other players. Hence, the best solution found in the population of a par-ticular problem will, in general, change when the other problems evolve. Thismeans that the elite found in an iteration will, in general, no longer be the elitein the next iteration.What we propose to tackle this problem is to evaluate all the individuals inthe population at the end of each generation, and select the move of the playeras the �ttest of these. At the beginning of following iteration, when the moves ofthe other players are updated, we reevaluate the whole population, and choosethe elite as the best of its individuals. This individual will be inserted unchangedin the following generation. Notice that the evaluation of this individual may beworse than best evaluation of the preceding generation.Using this process ensures that, at the solution of the �xed point problem,the optimisation problems do not diverge { although the �xed point methoditself may diverge. It henceforth replaces the standard elitist mode of evolution-ary algorithms, with the only drawback of having to perform a supplementaryevaluation, per iteration, for the whole population.2.2 Stackelberg equilibriaThe approach used to solve Stackelberg equilibria is even simpler than that usedfor Nash equilibria. As we provide a way of setting up a global optimisationproblem as a function of some exogenous parameters, what we do is to set upthe maximisation problem of the follower, given an arbitrary move of the leader.Then use this \functor" inside the objective function of the leader. Each timethe objective function of the leader is called, it starts by computing the reactionof the follower to the current leader's strategy; afterwards, the evaluation of theobjective of the leader is computed, taking into account this reaction. Hence, ateach computation of the objective of the leader, an inner optimisation problem(that of the follower) is solved.See �gure 2 for pseudo code describing the evolution approach for Stackelbergequilibria computation.As can easily be imagined, the computational burden inherent to this methodis rather high. Several ways can be implemented to tackle this; the simplest is thefollowing: limit to the number of generations spent solving the follower's problemto the number of the current generation in the leader's problem. This methodensures that at the beginning of the process, when the solution of the leader isstill rather imprecise, the answer computed to the follower is also imprecise. Aswe go further in the number of generations for the leader, the number of gener-ations spent in each follower problem is also increased, increasing its precision.At the end of the evolution process, when we get closer to the equilibrium moveof the leader, the reaction move of the follower is also computed with a largenumber of generations, and hence with an increased precision2.2 Another way consists on the implementation of an interpolation method for thedetermination of the followers reaction. This can be achieved in two ways. The �rstone is to build a database with follower's reactions for values covering all the search

t := 0 Start with an initial time.CreateStructure(ldr strategy,
r strategy) Create the data structures that hold the leader's andthe follower's strategies.leader(t) := CreateEvolOptim(ldr strategy,
r strategy) Create an evolutionaryoptimisation problem for leader. . .follower(t) := CreateEvolOptim(ldr strategy,
r strategy) . . . and for the follower.RandomInit(leader(t),follower(t)) Randomly initialise the population of each of the problemsiterate Start the meta-evolution process.t := t+1 update the time counterleader(t) := NewGeneration(leader(t-1),follower(t-1)) Create the new generation ofthe leader's optimisation problem, using the standard selection and reproduction operators, and theevaluation function coded below.ldr strategy := SelectBest(leader(t)) Set the leader's strategy: select the best solutionfound in the last iteration
r strategy := Solution(follower(ldr strategy(t))) Set the follower's strategy: thereaction to the leader's solutionuntil Terminated() Termination criteria: time, slack between strategies(t) and strategies(t-1) , etc.display solution Solution: the strategies computed above.endEvaluation(ldr move) : At each evaluation of the leader's objective, do:ldr strategy := ldr move Set the leader strategy as the move currently tried.
r strategy := Solution(follower(ldr strategy)) Evaluate the follower's reaction: solve itsoptimisation problem based on the current move of the leader.return LeaderObjective(ldr strategy,
r strategy) Evaluate the leader's objective, consideringthe follower's reaction.Fig. 2. Evolutionary algorithm for the computation of Stackelberg equilibria. At eachsolution point, the objective of the leader evaluates the reaction of the follower, bysolving its optimisation problem parameterised by the current leader's solution.The elitist procedure for the leader's problem must be as described for theNash equilibria; the follower's problem can be solved using standard elitism.3 Convergence propertiesConvergence of the evolutionary algorithm that we use for global optimisationproblems has been proved in [3]. In this context, convergence means that, withspace of the leader. Then, at the evaluation of the leader's objective, one couldinterpolate values in this database in order to obtain the reaction values, or traina neural network to compute it. The other possibility is to dynamically store thevalues of the reaction, at the time we are computing the leader's objective. Thefollower's move would be computed by an optimisation if there are no data availablein the \neighbourhood" of the leader's move, and interpolated if those data exist.The neighbourhood criteria could be adjusted dynamically, being more exigent asthe program approaches the end.

probability one, we obtain a monotone sequence of objective function evaluationswhich converges to the supremum (for maximisations) of the objective function,in the search domain, as the number of iterations tends to in�nity.Convergence for Nash and Stackelberg equilibrium problems depends on theconvergence of each of the inner global optimisation problems, and hence, atthe best of the scenarios, is bound to a sequence of function evaluations thatconverges to the corresponding evaluations at the equilibrium.3.1 Convergence for Nash equilibrium problemsConditions for ensuring the convergence of a �xed point method, where each ofthe equations of the system is a parameterised global optimisation problem, arerather di�cult to state in a general way.Examples of cases where convergence for a �xed point does not occur areeasy to �nd. In order to be able to theoretically ensure convergence we wouldhave to enforce rather restrictive conditions on the type of global optimisationproblems, such as concavity and continuity. As these conditions are not veri�ed,in general, for global optimisation problems, there is no reason to enter into deepdetail in the theoretical analysis of the convergence.Although we do not prove it, we claim that this algorithm converges to thesolution of a Nash equilibrium if the following conditions hold:1. The solution exists;2. The solution is stable, i.e., the �xed point iteration leads to an equilibrium;3. At the solution point, the maximisation problem for each of the players is aregular optimisation problem, if we keep the variables for all the remainingagents �xed.By a regular optimisation problem we mean that there exists a subset of thefeasible region contiguous to the optimum with a positive volume (see also [5, 4]).We must stress, nevertheless, that in some situations �xed point iterationdoes not lead to a Nash equilibrium, and hence the heuristic that we proposecannot assure convergence for general problems. Therefore, the user must care-fully verify the solution obtained.3.2 Convergence for Stackelberg equilibrium problemsStackelberg equilibrium problems are trivially assured to converge as long as theoptimisation problems for each of the players are regular. Two aspects shouldbe asserted for guaranteeing convergence:1. the follower's problem is regular all over the leader's strategy domain;2. the leader's problem is regular all over the follower's strategy domain;These conditions are su�cient to ensure that the meta-problem is regular.

4 ExamplesThe examples presented here are academic classical cases in economics: Nash-Cournot and Stackelberg competition between �rms that produce the same,homogeneous product. The examples are simple, in order to be possible to ana-lytically verify the solutions obtained.For the sake of simplicity of the analytical treatment, the demand functionused is linear, with the following form:P (x) = a� b � xwhere x is the quantity and P (x) is the inverse demand function. For simplicitytoo, costs are supposed to be null: C(x) = 0Notice that although the examples presented are continuous and di�eren-tiable, the algorithms described can be used in much more general situations.For a more extensive set of test problems, the reader is referred to [4].4.1 A Nash-Cournot gamePro�ts in a Nash-Cournot oligopoly with two identical �rms, i, are given by:�i(x1; x2) = P (x1 + x2) � xi � Ci(xi)= xi[a� b(x1 + x2)]for �rms i = 1; 2. The solution of the (linear) system of equations of the �rstorder conditions leads to x�1 = x�2 = a3 bWe have used the algorithm for the computation of Nash equilibria describedin this paper to obtain a numerical solution of this problem. Using the parametersa = 10 and b = 1, with 100 iterations, we achieved the correct solution, x�1 =x�2 = 3:333 and ��1 = ��2 = 11:111. A log of the evolution of the �xed pointiteration is presented in �gure 3.4.2 A Stackelberg gameIn a Stackelberg oligopoly with two �rms with null costs, the pro�t of the follower�rm is given by: �f (xl; xf) = P (xl + xf) � xf � Cf (xf)= xf [a� b(xl + xf)]where the index f stands for the follower, and l stands for the leader. Thesolution of the �rst order condition associated with the follower's pro�t leads toits reaction function: f (xl) = a� b xl2 b

2.5

3

3.5

4

4.5

5

5.5

0 10 20 30 40 50

q
u
a
n
t
i
t
i
e
s

iteration

Fixed-point iteration log for Nash-Cournot game

x1
x2

Fig. 3. Fixed-point iteration log for a Nash Cournot game with two players: quantitiesdetermined by the algorithm as a function of the iteration number.The pro�t of the leader is then given by:�l(xl) = P (xl + (xl)) � xl � Cl(xl)= xl(a� b xl)2The �rst order condition for the optimisation of the leader's pro�t drives to thedetermination of its optimal quantity, x�l = a2 b . This, in turn, leads to x�f = a4 b .This problem has been numerically solved with the algorithm for Stackelbergequilibria computation presented in this paper. For the parameters a = 10 andb = 1, with 100 iterations, we obtained the correct solution, x�l = 5:000 andx�f = 2:500, with pro�ts ��l = 12:5 and ��f = 6:25. A log of the evolution of theiterative process is presented in �gure 4.4.3 Stackelberg �rm followed by a Nash-Cournot gameWe consider now the situation where a leader �rm is followed by two other �rms,which play a Nash-Cournot game between them, taking into account the leader'squantity. In this oligopoly, if �rms have null costs, their pro�t is given by:�j(xl; xf1 ; xf2) = P (xl + xf1 + xf2) � xj � Cj(xj)= xj [a� b (xl + xf1 + xf2)]where the indexes f1; f2 stand for the followers, l stands for the leader, and jfor any �rm. The solution of the system of �rst order conditions for the twofollowers leads to their reaction functions: fi(xl) = a� b xl3 b

2

2.5

3

3.5

4

4.5

5

5.5

0 2 4 6 8 10 12 14 16 18 20

q
u
a
n
t
i
t
i
e
s

iteration

Iteration log for Stackelberg game

leader
follower

Fig. 4. Iteration log for a standard Stackelberg game. Quantities for the leader andthe follower determined by the algorithm, as a function of the iteration number.for i = 1; 2. The pro�t of the leader can now be determined by:�l(xl) = P (xl + f1(xl) + f2(xl)) � xl � Cl(xl)= xl � (a� b xl)3The �rst order condition for the optimisation of the leader's problem leadsto the its optimal quantity, x�l = a2 b . This, in turn, leads to x�f2 = x�f2 = a6 b .We have implemented a hybrid of the two algorithms proposed for the numer-ical solution of this two stage problem. The output of the second stage, the innerNash game, was the reaction functions of the two followers, determined througha �xed point iteration. This equilibrium was determined at each evaluation ofthe leader's objective, considering the input leader's strategy as �xed.For a = 10 and b = 1, with 100 iterations, we obtained the correct solution,x�l = 5:000, x�f1 = x�f2 = 1:667, with pro�ts ��l = 8:333, ��f1 = ��f1 = 2:781. Alog of the evolution of the iterative process is presented in �gure 5.5 ConclusionIn this paper we describe evolutionary heuristics for numerically assessing sys-tems of several, interdependent optimisation problems. The approaches can beused for the solution of games with simultaneous moves of the players (Nashequilibria), asynchronous moves (Stackelberg equilibria), or a mix of these.The application of the algorithms is possible in cases where the presence ofnon-convexities, integral variables, or other factors restrain the use of traditionalmethods, based on derivatives.In many cases, simple �xed point iteration does not lead to an equilibrium, inNash games. Hence, the method proposed for its solution does guarantee conver-gence in general. Nevertheless, this strategy converged for the practical examples

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 5 10 15 20 25

q
u
a
n
t
i
t
i
e
s

iteration

Iteration log for Stackelberg/Nash-Cournot game

leader
follower 1
follower 2

Fig. 5. Iteration log for a Stackelberg game where the leader's �rm action is followedby a Nash game between two followers. Quantities determined by the algorithm as afunction of the iteration number.reported in this paper and in [4]. Formal analysis of convergence properties, andimprovement of the �xed point method remain as future research directions.The computational burden inherent to the strategy used for the determi-nation of Stackelberg equilibria restrains the use of the method for medium tolarge scale problems. However, the acceleration techniques suggested and thecontinuous progress in the power of computers, bring the method promising forfuture use.The examples presented in this paper allowed us to experimentally assertthe convergence of the heuristics that we propose to the equilibrium solution forsome simple, well known games in economics.References1. R. Amir and I. Grilo. Stackelberg vs. Cournot/Bertrand equilibrium. DiscussionPaper 9424, Centre for Operations Research and Econometrics, Belgium, 1994.2. J. P. Pedroso. Niche search: an evolutionary algorithm for global optimisation. InProceedings of the Fourth Parallel Problem Solving from Nature Conference, Berlin,Germany, 1996. Springer. In press.3. J. P. Pedroso. Niche search and evolutionary optimisation. Discussion paper, Centrefor Operations Research and Econometrics, Belgium, 1996. Submitted to publica-tion.4. J. P. Pedroso. Universal Service: Issues on Modelling and Computation. PhD thesis,Universit�e Catholique de Louvain, 1996.5. H.-P. Schwefel. Numerical Optimization of Computer Models. John Wiley & Sons,1981.6. J. M. Smith. Evolution and the Theory of Games. Cambridge University Press,1982.This article was processed using the LATEX macro package with LLNCS style

