Simple meta-heuristics using the simplex
algorithm for non-linear programming

Joao Pedro PEDROSO

INESC - Porto and
DCC - Faculdade de Ciéncias, Universidade do Porto, Portugal

jpp@fc.up.pt

Abstract. In this paper we present an extension of the Nelder and Mead
simplex algorithm for non-linear programming, which makes it suitable
for both unconstrained and constrained optimisation'. We then explore
several extensions of the method for escaping local optima, and which
make it a simple, yet powerful tool for optimisation of nonlinear functions
with many local optima.

A strategy which proved to be extremely robust was random start local
search, with a correct, though unusual, setup. Actually, for some of the
benchmarks, this simple meta-heuristic remained as the most effective
one. The idea is to use a very large simplex at the begin; the initial
movements of this simplex are very large, and therefore act as a kind of
filter, which naturally drives the search into good areas.

We propose two more mechanisms for escaping local optima, which, still
being very simple to implement, provide better results for some difficult
problems.

1 Extensions to the simplex method

Nelder and Mead’s algorithm for non-linear programming [2] is a local search
method for finding a minimum of a function, based on the movements of a sim-
plex in a multi-dimensional space. These movements rely on function evaluations,
and do not require information concerning the gradient of the function. Points of
the simplex are ordered according to the value of the objective function, possibly
added to a penalty, if the problem is constrained and the solution is infeasible.
However, the algorithm does not require the actual value of function evaluation
at each of the points; all that is required is to order the simplex’s points, for
determining through which vertex should reflection, expansion, or contraction
be done. This is a common characteristic to all direct search methods [3].

The problem dealt with in this paper is characterised by a nonlinear function
of a vector z, that we want to optimise. This function is usually multimodal,
and in many cases non-smooth.

We assume that there are box constraints, i.e., for a problem of dimension
N there will be constraints:

! An extended version of this paper is available in [1].

If in addition to the box constraints there are P more general constraints in
the form g,(x) < 0, for p = 1,..., P, then the total constraint violation for a
solution x can be assessed by

P N
§(z) =Y max(gy(x),0) + Y _ [max(z; — u;,0) + max(l; — 2;,0)]. (2)

i=1

The comparison of solutions can be based on this value, as well as on the objective
value. For two different solutions = and y, = improves y if and only if §(z) < d(y),
or 6(z) = d(y) and the objective value of z is better than that of y.

Based on this classification scheme, we are able to order the points of the
simplex, even if some points are feasible and other not, and directly apply the
simplex algorithm to constrained problems. Notice that equality constraints are
poorly dealt by this modified method. The simplex will probably converge into
a point which is on the surface defined by the equality, but will likely have much
trouble for moving on that curve, in order to improve the value of the objective,
without increasing infeasibilities. The classification system was used in [4]; a
more elaborate method would be the filter method proposed in [5].

A random solution for a given instance is an N-dimensional vector that can
be drawn as

where we denote a random number with uniform distribution in the interval
[a,b] as % (a,b). One possibility for using the Nelder and Mead algorithm is to
start from a random point, as determined by Equation 3. Using the solution
classification method described above, the search can start with a very large
simplex, as this method tackles the possibility of getting out of bounds. Hence,
we propose a setting were the initial step is very large: all the points except
the initial random point will be out of bounds. Computational experiments have
shown that this setup improves the overall performance of the simplex search;
for smaller steps, the simplex would soon be trapped in a (generally poor) local
optimum.

2 Escaping local optima

As the simplex method uses downhill movements, its solution will in general be a
local optimum. If we wish to overcome this drawback, and be able to potentially
obtain the global optimum of an NLP, we have to provide an escape mechanism.

The strategies that we describe for escaping are based on a restart criterion
€, and a stopping criterion M. Both of these are user-supplied values. Restart
will occur if the vertices of the simplex have all evaluations which are feasible (or
all infeasible), and the deviation between the objective (resp., the infeasibility)
of the best and worst vertices is bellow €. All of the methods will stop if the
number of evaluations has reached the limit M.

2.1 Random-start iterated simplex

This method consists of restarting the algorithm from a random solution every
time there is convergence of the simplex according to the criterion €, until the
maximum number of evaluations M is reached. At each iteration, a random point
is drawn and the simplex is reinitialised from that point (with a large step).
Whenever the best found solution is improved, a new local search is performed
with a smaller stopping criterion €, for refining this local optimum.

The algorithm returns the best solution found on all the iterations.

2.2 Directional escape

Another possibility for escaping local optima is the following. When the simplex
has converged according to the criterion €, start expanding the simplex through
its best vertex (always updating the ranking among the vertices). Expansion
will initially decrease the quality of the point; but after a certain number or
repetitions, we will reach a local pessimum, and the subsequent expansion will
lead to an improvement. We propose to expand until the worst point of the
simplex has been improved. At that point, we expect to be on the other side of
the hill; hence, if we restart the simplex algorithm from that point, we expect to
reach a different local optimum. We also restart if the bound has been crossed,
using the first point outside bounds to initialise the simplex.

After an escape point is determined, the simplex is reinitialised around it
by adding a large step independently to each of its coordinates. We called this
strategy escape.

This strategy has the nice property of requiring no additional parameters.

2.3 Tabu search

Tabu search for non-linear programming is not a precisely defined concept, as
there is not a commonly used notion of tabu in this context. Actually, if the tabu
concept is related to the kind of movement that is done, the escape mechanism
described in the previous section can be considered as a tabu search: after a local
optimum is reached, only expansion of the simplex is considered non-tabu.

In this section we propose a different concept: that of tabu based on the
region of space being searched (as proposed also, for example, in [6]).

As we will shortly see, for tabu search to work in our setting it will have to be
significantly modified, compared to the more usual tabu search in combinatorial
optimisation.

Tabu solutions: classification. A trivial extension of the method devised
for solution classification described on section 1 comnsists of associating a tabu
value to each solution, and then using this value as the primary key for solution
sorting. In this context, for two different solutions x and y, x is said to improve
y if and only if:

— « has a smaller tabu value than y;

— both have similar tabu values, and x has a smaller sum of constraint viola-
tions than y (i.e., 6(x) < §(y));

— both are feasible and not tabu, and the objective value of = is better than
that of y.

Tabu regions. The most straightforward way of implementing a tabu search
for continuous, non-linear problems is that of making the region around a local
optimum (obtained by the Nelder and Mead algorithm) a tabu region. This way,
for the tenure of the tabu status, we are sure that the search will not fall into
the same local optimum.

This strategy, however, did not lead to good results, for the benchmarks
used in this paper. We have tested many different approaches on this method,
all of them with no success. The main reasons for this are related to the size
of the tabu region: if it is too narrow, the search tends to find local optima
on the border between tabu and non-tabu regions; on the other hand, if the
region is too large, good local optima around the current solution are missed.
This difficulty in parameterisation, and the observation that search around local
optima is frequently essential to find better solutions, lead us to give up true
tabu search, and try the opposite strategy: non-tabu search.

2.4 Inverting tabu regions: non-tabu search

As all the strategies that assigned a tabu status to the region of the last found
local optima failed, we deduced that this tabu status barred the search from
good regions, resulting in poor performance.

It is therefore expectable that for a good performance, the search has to be
driven into the areas of previous local optima, instead of avoiding them. The
rationale is that good local optima are often close to other local optima; hence,
it might make sense to reinforce the search around previous optima, instead of
avoiding regions close to them. Of course, the limit of this reasoning occurs when
search cannot escape some particular local optimum.

In the algorithm that we devised for this, which could be named non-tabu
search, the region around a local optimum is exploited by drawing a random
solution on its vicinity, and restarting local search from it. A parameter o controls
the distance from the current base solution, used to draw new starting solutions.
Another parameter, R, controls the number of attempts to do around each base
solution. After R attempts are made, the base solution moves into the best
solution found in theses tentatives.

These two parameters give a way for controlling the search, and to adapt
it to the problem being tackled. Good parameters for a particular problem are
generally easy to devise; but we could find no parameters that are simultaneously
good for all the benchmarks.

3 Conclusions

In this paper we presented an extension of the simplex method for non-linear
programming which allows its straightforward application to constrained prob-
lems.

For avoiding stagnation in local optima, we analysed the behaviour of several
escaping mechanisms. The simplest of them is random-start local search. Another
one was based on expanding the simplex from the local minimum, going uphill,
until the expansion goes downhill again. At that point, we expect to be on the
other side of the hill, and restarting simplex descent will likely lead to a different
local optimum. The other possibility presented is based on the exploitation of
the area of a the previous local optimum, by drawing starting points for local
search in its vicinity: we called it non-tabu search.

Computational experiments (available in [1]) have shown that all the escaping
mechanisms were effective for avoiding stagnation in local optima.

Due to the simplicity of its implementation, random start iterated local search
is a highly attractive method. However, for some problems it is not able to find
truly good solutions (though the average solution is generally of high quality).

The simplex expansion escaping mechanism is for most of the test cases
slightly superior to random start local search, but in general the non-tabu search
provides the best results.

Test and improvement of the escape methods for problems with equality
constraints, and other possibilities of dealing with these constraints, remain as
topics for future research. More research topics are their incorporation in more
elaborate strategies, like strategic oscillation or population based methods.

References

1. Pedroso, J.P.: Simple meta-heuristics using the simplex algorithm for non-linear
programming. Technical Report DCC-2007-06, DCC, FC, Universidade do Porto
(2007)

2. Nelder, J.A., Mead, R.: A simplex method for function minimization. Computer
Journal 7 (1965) 308-313

3. Lewis, R.M., Torczon, V., Trosset, M.W.: Direct search methods: then and now.
Journal of Computational and Applied Mathematics 124(1-2) (2000) 191-207

4. Pedroso, J.P.: Meta-heuristics using the simplex algorithm for nonlinear program-
ming. In: Proceedings of the 2001 International Symposium on Nonlinear Theory
and its Applications, Miyagi, Japan (2001) 315-318

5. Audet, C., Dennis Jr, J.: A pattern search filter method for nonlinear programming
without derivatives. STAM Journal on Optimization 14(4) (2004) 980-1010

6. Chelouah, R., Siarry, P.: A hybrid method combining continuous tabu search and
nelder-mead simplex algorithms for the global optimization of multiminima func-
tions. European Journal of Operational Research 161 (2005) 636-654

