Meta-heuristics using the simplex algorithm for non-linear
programming

Joao Pedro PEDROSO

Centro de Investigagdo Operacional
Faculdade de Ciéncias da Universidade de Lisboa
and
Departamento de Ciéncia de Computadores
Faculdade de Ciéncias da Universidade do Porto
R. Campo Alegre 823, 4150-180 Porto, Portugal

Jpp@ncc.up.pt

Abstract— 1In this paper we present a meta-
heuristic for non-linear programming, based on the
Nelder and Mead simplex algorithm. The algorithm
proposed is suitable for both unconstrained and con-
strained optimisation. We explore several possibilities
for escaping local optima.

I. Introduction

The usage of the Nelder and Mead’s simplex algo-
rithm for non-linear optimisation as a part of a meta-
heuristic is not new; several authors have suggested
the inclusion of simulated annealing ideas in it[6, 2].
More recently, it has been used as a basis for applying
the scatter search method [5]. The results reported in
the literature are generally very encouraging.

We suggest further improvements to the simplex al-
gorithm, in particular for tackling constraints, as most
of the non-linear problems (NLP) with practical inter-
est are constrained problems. Previously published
works used penalties on infeasible solutions as a way
of handling constrained problems.

In this work we propose a scheme for classifying the
solutions of an NLP that takes into account both feasi-
bility and the objective value. Based on it, we are able
to sort the points of the simplex even in the case where
some points are feasible and other points are not. This
makes possible determining through which point of the
simplex should reflection, expansion, or contraction be
done, thus allowing straightforward application of the
Nelder and Mead’s algorithm.

The simplex algorithm is a local search method, and
does not encompass a procedure for escaping local op-
tima. Random-start iterated local search provides a
simple way for avoiding local optima. We investigate
on the performance of the modified simplex algorithm,
as well as iterated local-search based on it. Finally, we
propose additional procedures for trying to get away
from local minima.

II. The simplex method

The simplex method for NLP is a very simple and ele-
gant algorithm for finding the minimum of a function
in a multi-dimensional space. It works based only on
function evaluations, hence does not require informa-
tion concerning the gradient of the function.

In an N-dimensional space, a simplex is a polyhe-
dron with exactly N + 1 vertices (in general, we will
be interested in non-degenerate simplexes, which have
a finite volume in its space).

The algorithm starts with a simplex, and evaluates
its vertices. It will then, at each iteration, try to get
rid of it’s worst point, by applying the following steps:

1. Reflect the simplex into the opposite side of the
worst point.

2. If the reflection led to a point which is better
than the simplex’s best point, then try expand-
ing further in that direction.

3. If the reflection led to a point which is worse than
the second-worst point, then contract the sim-
plex in one-dimension, moving the worst point
in the direction of the simplex’s centroid.

4. If this contraction did still not improve the
simplex’s second-worst point, then do a multi-
dimensional contraction, by moving all the
points in the direction of the best point.

These steps are repeated until a specified stopping cri-
terion is satisfied. The more frequently used criteria
are based on the slack between the best and the worst
point, on the distance the simplex’s centroid moved,
or on the number of function evaluations.

For a more complete description of the method and
a computational implementation, please refer to [6].

ITI. Classification of NLP solutions

Notice that the simplex algorithm does not require
the actual value of function evaluation at each of the
points; all that is required in to order the simplex’s
points, for determining through which vertex should
reflection, expansion, or contraction be done. Gener-
ally, points are ordered according to the value of the
objective function, possibly added to a penalty, if the
problem is constrained and the solution is infeasible.

We propose that the comparison of solutions should
be based on the deviation from feasibility, as well as
on the objective value. For two different solutions z
and y, z is said to improve y if and only if:

e z is closer to feasibility than y

e they are both feasible, or identically close to fea-
sibility, and the objective value of z is better
than that of y

Based on this classification scheme, we are able to or-
der the points of the simplex, even if some points are
feasible and other not, and directly apply the algo-
rithm. The measure of infeasibility is given by the sum
of constraint violations (including bound’s violation).

IV. Escaping local optima

As the simplex method uses downhill movements, its
solution will in general be a local optimum. If we wish
to overcome this drawback, and be able to potentially
obtain the global optimum of an NLP, we have to pro-
vide and escape mechanism.

The strategies that we describe for escaping are
based on a restart criterion €, and a stopping crite-
rion M. Both of these are user-supplied values.

Restart will occur if the vertices of the simplex have
all evaluations which are feasible (or all infeasible),
and the deviation between the objective (resp., the
infeasibility) of the best and worst vertices is bellow e.
We use absolute deviations if the objectives are close
to zero (less than €), relative deviations otherwise.

All of the methods will stop if the number of evalu-
ations has reached the limit M.

A. Tterated simplex

This method consists of restarting the algorithm from
a random solutions every time there is convergence
of the simplex according to the criterion €, until the
maximum number of evaluations M is reached.

B. Directional escape

Another possibility for escaping is the following. When
the simplex has converged according to the criterion
€, start expanding the simplex through its best vertex
(always updating the ranking among the vertices). Ex-
pansion will initially decrease the quality of the point;
but after a certain number or repetitions, we will reach

a local mazimum, and the expansion will lead to an
improvement. We propose to expand until the worst
point of the simplex has been improved. At that point,
we expect to be on the other side of the hill; hence,
if we restart the simplex algorithm from that point,
we expect to reach a different local optimum. We also
restart if the bound has been crossed, using the first
point outside bounds to initialise the simplex.

We have tested two possibilities for reinitialisation.
The first, corresponds to the usual way of initialising
the simplex: it consists of adding a step A, indepen-
dently, to each of the coordinates of z0:

ot =20 4+ Nef(u—1) (1)

where e’ are the unit vectors of dimension N (ef = 1,
ej- =0 Vj#1i), and u and [are the upper and lower
bound vectors. We called this strategy escape.

The other possibility is to complete the simplex with
points z?, for i > 0, drawn randomly with uniform
distribution between [and u. This strategy was called
escape+random.

V. Computational results

For the evaluation of the strategies that we proposed
in this paper, we have relied on a set of multi-modal
test functions which include constrained and uncon-
strained problems. (Benchmarks which were maximi-
sation problems were converted into minimisations.)
Problem 1: Griewank’s function (d = 4000).

N N
hi@) = éZ(xz —100)* — Hcos (L\/;OO> +1

i=1

zi € [—600,600] i=1,...,N

Problem 2: Shekel’s foxholes (m = 30; ¢;, A(¢) avail-
able in [1]). 1

fala) = =3
; llz — A)I* + ¢
2 €]0,10] i=1,...,N
Problem 3: Michalewicz’ function (m = 10).
N L
fa(z) = — ;sin(:ci) - sin®™ (%)

z; €[0,x] i=1,...,N

Problem 4: Langerman’s function. (m = 30; ¢;, A(%)
available in [1]).

“ _llz=AG)2 i
fa@) == ci-e” = -cos(m-|lz — AG)II*)
j=1
z; €[0,10] i=1,...,N

Problem 5: Crescent function (N = 2) [4].
fs(@) = (w1 — 10)* + (z2 — 20)°

(1 —5) + (x2 — 5)> > 100
(1 — 6)% + (z2 — 5)% < 82.81
z1 € [13,100], z2 € [0,100]

subject to:

Problem 6: Luus’s function (IV = 3) [2].
fo(x) = af + 23 + 23
subject to :
4(z1 — 0.5)% 4+ 2(z2 — 0.2)* + 23 + 0.1z122 + 0.22223 < 16
277 + x2 — 223 > 2
z €[-23,2.7] i=1,2,3

Problem 7: Keane’s function.
|EZV=1 cos(x;) — 2 vazl cos®(z;)

fr(z) = —
(S i)
N
subject to: 1_[3:Z >0.75
i=1
Z zi < 15N/2

i=1

z; €[0,10] i=1,...,N

Problem 8: Polygon model [3]. (The actual number of
variables is 2N.)
N-1

1 .
fe(z,y) = ~3 Ti1Ti Sin(Yiv1 — yi)
i=1

subject to :

@} +acj2- —2z;zjcos(y; —y;) <1,i=1,..
¥ < Yiy1, t=1,...,N

z; €10,1], y; €[0,7] i=1,...,N

For the benchmarks which admit choosing the di-
mension of the problem, we have set N=10. In all the
runs a random solution z° in the box defined by the
problem bounds was used as the first vertex of the ini-
tial simplex. The remaining vertices z*, 4 = 1,..., N,
were obtained by equation 1. In this experiment we
have set A = 1. This implies that all the points except
2% will be infeasible, as they will be out of the bound-
ing boxes. Computational experiments have shown
that this improves the overall performance of all the
tested methods. For smaller steps, the simplex would
soon be trapped in a (generally poor) local optimum.

For each of the methods, the initial solution is differ-
ent from run to run; but for a given run, all the meth-
ods will start on the same solution. This explains why
the performance curves presented below are all identi-
cal during the initial steps (until the first restart).

In this experiment the maximum number of function
evaluations allotted to each method were M = 100000.
For all the methods except the pure simplex method,
we established a criterion € = 10~* for stopping the
current downhill search. This implies that when the
deviation between the objective of the best and the
worst point of the simplex is less than that value, the

iterated simplex and the escape strategies will restart
on a different solution. The pure simplex method will
continue exploiting that local optimum, until reaching
M evaluations.

The only performance index considered is the value
of the best evaluation as a function of the number of
evaluations. That value, averaged on 100 independent
runs, is plotted on figures 1 and 2. For constrained
problems, lines were plot after all the 100 runs ob-
tained feasible solutions (and hence it was possible to
average the objective values).

VI. Conclusions

In this paper we presented an extension of the simplex
method for non-linear programming which allows its
straightforward application to constrained problems.

For avoiding stagnation in local optima, we analysed
the behaviour of iterated application of the simplex
method, as well as other escape mechanisms. These
were based on expanding the simplex from the local
minimum, going uphill, until the expansion goes down-
hill again. At that point, we expect to be on the other
side of the hill, and restarting simplex descent will
likely lead to a different local optimum.

The numerical experiments have shown that all the
escaping mechanisms were effective for avoiding stag-
nation in local optima. Due to the simplicity of its
implementation, iterated local search might be the pre-
ferred method.

References

[1] H. Bersini, M. Dorigo, L. Gambardella, S. Langer-
man, and G. Seront. First international contest on
evolutionary optimization, 1996. In IEEE Interna-
tional Conference on Evolutionary Computation.

[2] M. F. Cardoso, R. L. Salcedo, and S. F. Azevedo.
The simplex-simulated annealing approach to con-
tinuous non-linear optimization. Computers Chem-
ical Engineering, 20(9):1065-1080, 1996.

[3] E. D. Dolan and J. J. Moré. Benchmarking op-
timization software with COPS. Technical Re-
port ANL/MCS-246, Argonne National Labora-
tory, 2001.

[4] C. A. Floudas and P. M. Pardalos. Recent Ad-
vances in Global Optimization. Princeton Univer-
sity Press, 1992.

[5] F. Glover, M. Laguna, and R. Marti. Scatter
search. Technical report, Graduate School of Busi-
ness Administration, University of Colorado, 2000.

[6] W. H. Press, B. P. Flannery, S. A. Teukolsky, and
W. T. Vetterling. Numerical Recipies in C: the
Art of Scientific Computing. Cambridge University
Press, second edition, 1997.

Problem griewank

1000 . . .
iterated simplex
escape
escape+random -
100 | simplex i
10 | E
<
2
g af g
©
s
[
o
>
o 0.1 |
°
s
T
0.01
0.001
0.0001 L L L L
0 20000 40000 60000 80000 100000
number of evaluations
Problem shekel
0 T T P T
iterated simplex
escape
escape+random
simplex
-05 A
At i
<
2
T
S
©
s
[
o
>
g
o
s
T
2+ e i
25 A
3 I I I I
0 20000 40000 60000 80000 100000
number of evaluations
Problem michalewicz
1 T T - Ly,
iterated simplex
escape
2L escape+random il
simplex
3 i
4 b i
<
2
T
s s} 4
]
s
[
o
> i
g
o
s
T
10 I I I I
20000 40000 60000 80000 100000
number of evaluations
Problem langerman
0.05 T T T
iterated simplex
escape
05 escape*randon
simplex
<
2
T
S
3 i
s
]
o
g i
g
o
s
T i
-0.35 A
04} 1
045 F T e L
-05 I I I I
0 20000 40000 60000 80000 100000

Figure

number of evaluations

1: Performance on unconstrained benchmarks.

Problem crescent

-4500
iterated simplex
escape
escape+random
simplex
-5000 -
<
2 5500 |
5]
S
s
s
@
@
>
<
Q -6000
E
-6500
-7000
100 1000 10000 100000
number of evaluations
Problem keane
0.1 T T T T
iterated simplex
escape
015 escape+random i
: simplex
02 -
-0.25 -
<
2
®
= 03 -
]
s
@
@
E’ -0.35 -
B
T
-0.4 -
-0.45 -
05 -
0.55 I I I I
1 10 100 1000 10000 100000
number of evaluations
Problem luus
-6 T T
iterated simplex
escape
escape+random
simplex
ran
8+

average evaluation
©
T

-12

10

100 1000 10000 100000
number of evaluations

Problem polygon

average evaluation

iterated simplex

escape
escape+random
simplex

Figure 2:

1000 100000

number of evaluations

Performance on constrained benchmarks.

