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Abstract. Regression trees are models developed to deal with multiple
regression data analysis problems. These models fit constants to a set
of axes-parallel partitions of the input space defined by the predictor
variables. These partitions are described by a hierarchy of logical tests
on the input variables of the problem. Several authors have remarked that
the preference criteria used to select these tests have a clear preference
for what is known as end-cut splits. These splits lead to branches with
a few training cases, which is usually considered as counter-intuitive by
the domain experts. In this paper we describe an empirical study of the
effect of this end-cut preference on a large set of regression domains. The
results of this study, carried out for the particular case of least squares
regression trees, contradict the prior belief that these type of tests should
be avoided. As a consequence of these results, we present a new method
to handle these tests that we have empirically shown to have better
predictive accuracy than the alternatives that are usually considered in
tree-based models.

1 Introduction

Regression trees [6] handle multivariate regression methods obtaining models
that have proven to be quite interpretable and with competitive predictive ac-
curacy. Moreover, these models can be obtained with a computational efficiency
that hardly has parallel in competitive approaches, turning these models into
a good choice for a large variety of data mining problems where these features
play a major role.

Regression trees are usually obtained using a least squares error criterion that
guarantees certain mathematical simplifications [8, Sec. 3.2] that further enhance
the computational efficiency of these models. This growth criterion assumes the
use of averages in tree leaves, and can be seen as trying to find partitions that
have minimal variance (i.e. squared error with respect to the average target
value). The main drawback of this type of trees is the fact that the presence of
a few outliers may distort both the average as well as having a strong influence
in the choice of the best splits for the tree nodes. In effect, as we will see in this



paper, the presence of outliers’ may lead to the choice of split tests that have a
very small sub-set of cases in one of the branches. Although these splits are the
best according to the least squares error criterion they are counter-intuitive to the
user and as we will see may even degrade predictive performance on unseen data.
Users find it hard to understand that trees have top level nodes with branches
that are very specific. Most users expect that top level nodes “discriminate”
among the most relevant groups of observations (e.g. the observations with very
high value of the target variable and the others).

The work presented in this paper addresses the problem of allowing this type
of splits in regression trees, which is known as the end-cut preference problem
[2, p.313-317]. We study this type of splits and their effect on both predictive
accuracy and interpretability of the models. We compare this to the alternative
of avoiding this type of splits in the line of what was proposed by Breiman and
colleagues [2]. Our extensive experimental comparison over 63 different regression
problems shows that the differences in terms of predictive accuracy of both
alternatives are quite often statistically significant. However, the overall number
of significant differences does not show a clear winner, which contradicts prior
belief on the effect of end-cut preference in tree-based regression models.

In this paper we propose an alternative method that allows end-cut preference
only in lower levels of the trees. The motivation behind this method is to avoid
these splits in top level nodes, which is counter-intuitive for the users, but at the
same time use them in lower levels as a means to avoid their negative impact in
the accuracy of trees using least squares error criteria. Our experimental com-
parisons show a clear advantage of this method in terms of predictive accuracy
when compared to the two alternatives mentioned before.

In the next section we present a brief description of least squares regression
trees methodology and of the end-cut preference problem. Section 3 presents an
experimental comparison between the alternatives of allowing and not allowing
end-cut splits. In Section 4 we describe our proposed approach to handle the
end-cut preference problem, and present the results of comparing it to the other
alternatives. Finally, in Section 5 we provide a deeper discussion of the study
carried out in this paper.

2 Least Squares Regression Trees

A regression tree can be seen as a kind of additive regression model [4] of the

form,
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These models are sometimes called piecewise constant regression models.
Regression trees are constructed using a recursive partitioning (RP) algorithm.
This algorithm builds a tree by recursively splitting the training sample into
smaller subsets. The algorithm has three key issues:

— A way to select a split test (the splitting rule).
— A rule to determine when a tree node is terminal.
— A rule for assigning a model to each terminal node (leaf nodes).

Assuming the minimization of the least squares error it can be easily proven
(e.g. [8]) that if one wants to use constant models in the leaves of the trees, the
constant to use in each terminal node should be the average target variable of
the cases falling in each leaf. Thus the error in a tree node can be defined as,
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where D, is the set of n; training samples falling in node ¢; and g, is the average
target variable (Y') value of these cases.
The error of a regression tree can be defined as,
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where T is the set of leaves of tree T; and P(l) is the probability of a case falling
in leaf | (which is estimated with the proportion of training cases falling in the
leaf).

During tree growth, a split test s, divides the cases in node ¢ into a set
of partitions. The decrease in error of the tree resulting from this split can be
measured by,

n;

AErr (s,t) = Err (t) Z; o X Err (t;) (4)
where Err (t;) is the error on the subset of cases of branch ¢ of the split test s.
The use of this formula to evaluate each candidate split would involve several
passes through the training data with the consequent computational costs when
handling problems with a large number of variables and training cases. This
would be particularly serious, in the case of continuous variables that are known
to be the major computational bottleneck of growing tree-based models [3].
Fortunately, the use of the least squares error criterion, and the use of averages
in the leaves, allow for further simplifications of the formulas described above.
In effect, as proven in [8], for the usual setup of binary trees where each node
has only two sub-branches, ¢;, and tg, the best split test for a node is the test s

that maximizes the expression,
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This expression means that one can find the best split for a continuous vari-
able with just a single pass through the data, not being necessary to calculate
averages and sums of squared differences to these averages. One should stress
that this expression could only be derived due to the use of the least squares
error criterion and of the use of averages in the leaves of the trees?.

Breiman and colleagues [2] mention that since the work by Morgan and
Messenger [5] it is known that the use of the least squares criteria tends to favor
end-cut splits, i.e. splits in which one of the branches has a proportion of cases
near to zero>.

To better illustrate this problem we describe an example of this end-cut
preference occurring in one of the data sets we will use our experiments, the
Machine* domain. In this data set the best split test according to the error
criterion of Equation 5 for the root node of the tree, is the test M M AX < 48000.
This split divides the 209 training cases in two sub-branches, one having only
4 observations. This is a clear example of a end-cut split. Figure 1 helps to
understand why this is the best split according to the criterion of Equation 5.

As it can be seen in Figure 1, there are 4 observations (upper right part of
the figure) that have end-cut values in the variable MMAX, and at the same
time outlier values in the target variable. These are the two characteristics that
when appearing together lead to end-cut splits. Within this context, a candidate
split that “isolates” these cases in a single branch is extremely valuable in terms
of the least squares error criterion of Equation 5.

Allowing splits like MM AX < 48000 in the example above, may lead to
trees that seem quite ad-hoc to users that have a minimal understanding of the
domain, because they tend to expect that top level nodes show highly general
relations and not very specific features of the domain. This is reinforced by the
fact that on most large data sets, trees do tend to be too deep for a user to grasp
all details, meaning that most users will only be able to capture top-level splits.
As such, although no extensive experimental comparisons have been carried out
till now®, it has been taken for granted that end-cut splits are undesirable, and
most existing tree-based systems (e.g. CART [2], THAID [5] or C4.5 [7]) have
some mechanism for avoiding them. However, if the drawbacks in terms of user
expectations are irrefutable, as we will see in Section 3 the drawbacks of end-cut
splits in terms of predictive accuracy are not so clear at all in the case of least
squares regression trees.

()

?> In [8] a similar expression was developed for the least absolute deviation criterion
with medians on the leaves of the trees.

3 For a formal proof of end-cut preference see [2, p.313-317].

* Available for instance in http://www.liacc.up.pt/~Itorgo/Regression/DataSets.html.

% To the best of our knowledge.
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Fig. 1. An example of a end-cut preference problem.

3 An Experimental Analysis of the End-Cut Preference

In this section we carry out an experimental study of the consequences of end-cut
splits. Namely, we compare the hypothesis of allowing this type of splits, and
the alternative of using some form of control to avoid them.

In this experimental comparison we have used 63 different regression data
sets. Their main characteristics (number of training cases, number of continuous
variables, and number of nominal variables) are shown in Table 1.

Regarding the experimental methodology we have carried out 10 repetitions
of 10-fold cross validation experiments, in the light of the recent findings by
Bradford and Brodley [1] on the effect of instance-space partitions. Significance
of observed differences were asserted through paired t-tests with 95 and 99 con-
fidence levels.

The first set of experiments we report compares the following two types of
least squares regression trees®. The first tree has no control over end-cut splits,
thus allowing them at any stage of the tree growth procedure as long as they are
better according to the criterion of Equation 5. The second type of trees does
not allow splits? that lead to branches that have less cases then a minimum value

5 Both are implemented in system RT (http://www.liacc.up.pt/~ltorgo/RT/), and
they only differ in the way they handle end-cut splits. All other features are the
same.

" Both on continuous as well as nominal variables.



||Data Set ChamcteristicsHData Set Chamcteristics”
Abalone (Ab) 4177; 7; 1 Elevators (El) 8752; 40; 0
Delta Elevators (DE) 9517; 6; 0 Ailerons(Ai) 7154; 40; 0
Kinematics (Ki) 8192; 8; 0 Telecomm (Te) 15000; 26; 0
ComputerA (CA) 8192; 22; 0 ComputerS (CS) 8192; 12; 0
Algall (A1) 2005 8; 3 Algal2 (A2) 2005 8; 3
Algal3 (A3) 200; 8; 3 Algald (A4) 200; 8; 3
Algal5 (A5) 200; 8; 3 Algal6 (A6) 200; 8; 3
Algal7 (AT) 200; 8; 3 Anastesia (An) 80; 6; 0
Auto-Mpg (AM) 398; 4; 3 Auto-Price (AP) 159; 14; 1
Bank8FM (B8) 4500; 8; 0 Bank32NH (B32) 4500; 32; 0
CloseNikkei (CN) 2000; 49; 1 CloseDow (CD) 2399; 49; 1
Chlorophyll (Chl) 79:4;1 HouseSL (HS) 22784; 8; 0
House 16H (H16) 22784; 16; 0 Diabetes (Di) 43;2; 0
Pyrimidines (Py) 74; 24; 0 Triazines 186; 60; 0
FacultyD5001 (Fa) 197; 33; 0 Employment (Em) 368; 18; 0
ArtificialD2 (D2) 40768; 2; 0 Industry (In) 1555; 15; 0
Friedman Example (Fr) 40768; 10; 0  |[Housing (Ho) 506; 13; 0
Machine CPU (Ma) 209; 6; 0 Marketing (Mkt) 944; 1; 3
Artificial MV (MV) 25000; 7; 3 Puma8NH (P8) 4500; 8; 0
Puma32NM (P32) 4500; 32; 0 Servo 167; 0; 4
WiscoinBreastCancer (WBC) 194; 32; 0 CaliforniaHousing (CH) 20460; 8; 0
Additive (Ad) 30000; 10; 0 [|1KM (1KM) 710; 14; 3
Acceleration (Ac) 1732; 11; 3 CO2-emission (CO2)  1558; 19; 8
CW Drag (CW) 1449; 12; 2 Available Power (AP) 1802; 7; 8
Driving Noise (DN) 795; 22; 12 Fuel Town (FTw) 1764; 25; 12
Fuel Total (FTo) 1766; 25; 12 Fuel Country (FC) 1764; 25; 12
Maximal Torque (MT) 1802; 19; 13 Top Speed (TS) 1799; 17; 7
Maintenance Interval (MI)  1724; 6; 7 Heat (He) 7400; 8; 4
Steering Acceleration (SAc) 63500; 22; 1 ||Steering Angle (SAn) 63500; 22; 1
Steering Velocity (SV) 63500; 22; 1 Fluid Discharge (FD) 530; 26; 6
Fluid Swirl (FS) 530; 26; 6 China (Ch) 217, 9; 0
Delta Ailerons (DA) 7129; 5; 0

Table 1. The Used Data Sets.



established by the user. In our experiments we have set this minimum value to
10 cases.

Table 2 shows the results of the comparison between the two alternatives in
terms of Normalized Mean Squared Error (NMSE). Columns two and three show
the data sets where we observed a statistically significant win of some method
at different confidence levels, and the fourth column shows the cases where the
observed differences were not statistically significant.

| 99% | 95% | Not significant
20 2 15
End-Cut  |Ad,AP,B32,Chl,CO2,CW,D2, Ac,A1,A2,A3,A5,A6,A7,
Wins FS,FTo,F Tw,He,Ma,ML,MT, |FC,FD|Ch,CN,Fa,DN,Ho,Te, AP, WBC
An,Se,SAc,SAn,SV, TS
17 2 7
No End-Cut| 1KM,Ab,Ai,B8,CH,CD,CA,
Wins CS,DA,DE,EL,Fr,H16,H8 Ki | In,Py | A4,AP,Di,Mkt,MV,Em,Tr
P32,P8

Table 2. End-Cut versus No End-Cut in terms of NMSE.

The first thing to remark is that there is a statistically significant difference
between the two approaches on 41 of the 63 data sets. This reinforces the im-
portance of the question of how to handle end-cut splits. However, contrary to
our prior expectations based on previous works (e.g [2]), we didn’t observe a
clear advantage of not using end-cut splits®. On the contrary, there is a slight
advantage of the alternative allowing the use of end-cut splits at any stage of
tree growth (the average NMSE over all data sets of this alternative is 0.4080,
while not allowing end-cut splits leads to an average NMSE of 0.4140). The
main conclusion to draw from these results is that they provide strong empirical
evidence towards the need of a re-evaluation of the position regarding end-cut
splits in the context of least squares regression trees.

Why should end-cut splits be beneficial in terms of predictive error? We
believe the best answer to this question is related to the statistic used to measure
the error. Least squares regression trees revolve around the use of averages and
squared differences to these averages (c.f. Section 2). The use of averages as
a statistic of centrality for a set of cases is known to suffer from the presence
of outliers. By not allowing the use of end-cut splits that tend to isolate these
outliers in a separate branch (c.f. Figure 1), every node will “suffer” the influence
of these extreme values (if they exist). This will distort the averages, which may
easily lead to larger errors as the predictions of the trees are obtained using the
averages in the leaves. Going back to the example described in Section 2 with
the Machine data set, if one does not allow the use of end-cut splits, instead of

8 Still, we must say that the method proposed in [2] for controlling these splits is
slightly different from the one used in our experiments.



immediately isolating the four outlier cases shown in Figure 1, they will end-up
falling in a leaf that includes 10 other observations. This leaf has an average
target variable value of 553.64, which will be the prediction of the tree for every
test case falling in this leaf. However, 10 out of the 14 observations in this leaf,
have a target value in the range [208..510]. Thus the distribution in this leaf is
clearly being skewed by the outliers and this provides an idea of the risk of using
this leaf to make predictions. The same conclusion can be reached by looking at
the Mean Squared Errors® at the leaves of both trees. While the tree using end-
cut splits has an average MSE over all leaves of 5132.2, the tree without end-cut
splits has and average of 15206.4, again highlighting the effect of these outliers,
that clearly increase the variance in the nodes. One should remark that this does
not mean that the tree using end-cut splits is overfitting the data, as both trees
went, through the same post-pruning process that is supposed to eliminate this
risk (moreover the experimental comparisons that were carried out show that
this is not occurring, at least in a consistent way).

In resume, although clearly going against the intuition of users towards the
generality of the tests in the trees, end-cut splits provide some accuracy gains in
several data sets. This means that simply eliminating them can be dangerous if
one is using least squares error criteria. We should stress that the same conclu-
sions may not be valid if other error criteria were to be used such as least absolute
deviations, or even the criteria used in classification trees, as these criteria do
not suffer such effects of outliers.

As a consequence of the experimental results reported in Table 2 we propose
a new form of dealing with end-cut splits that tries to fulfill the interpretability
expectations of users that go against the use of end-cut splits, while not ignoring
the advantages of these splits in terms of predictive accuracy. This new method
is described in the next section.

4 A Compromising Proposal for Handling End-Cut
Preference

The main idea behind the method we propose to deal with end-cut preference is
the following. End-cut splits should not be allowed in top level nodes of the trees
as they handle very specific (poorly represented in the training sample) areas of
the regression input space, thus going against the interpretability requirements
of most users. As such, our method will use mechanisms to avoid these splits in
top level nodes of the trees, while allowing them in bottom nodes as a means to
avoid the distorting effects that outliers have in the averages in the leaves.

In order to achieve these goals we propose a simple method consisting of not
allowing end-cut splits unless the number of cases in the node drops below a
certain user-definable threshold!?. Moreover, as in the experiments of Section 3,
a test is considered an end-cut split if one of its resulting branches has less than

9 Larger values of MSE indicate that the values are more spread around the average.
10 In the experiments we will report we have set this threshold to 100 cases.



a certain number of cases'!. This means that nodes with a number of training
cases between the first and second of these thresholds are allowed to consider
end-cut splits. These are the bottom nodes of the trees!2.

Our hypothesis is that with this simple method we will obtain trees that
are acceptable in terms of interpretability from the user perspective, but at the
same time will outperform both alternatives considered in Section 3 in terms
of predictive accuracy. With the purpose of testing this hypothesis we have
carried out an experiment similar to the one reported in Section 3, but now
comparing our proposed method with the two alternatives of allowing end-cut
splits everywhere, and not allowing them at all. The results of comparing our
method to the former alternative are shown in Table 3.

| 99% 195%] Not significant
16 0 22
Our Method|Ab,Ad,Ai,CH,CD,CA,D2,DA, 1KM,A2,A3,A5,AP,B8,CS
Wins DE,El,H16,H8,In,Ki,Pu8,SV DN,FD,FTo,FTw,FC,He,MI
Mkt,Em,Pu32,SAc,SAn, TS, Tr
2 0 23
End-Cut Ac,A6,A7,AM,B32,Chl,Ch,
Wins A1l Fa CN,C02,CW,Di,FS,Fr,Ho,Ma,
MT,MV,Te,AP,Py,An,WBC,Se

Table 3. Our method compared to allowing end-cut splits in terms of NMSE.

This comparison clearly shows that there is no particular advantage in al-
lowing end-cut splits everywhere, when compared to our proposal (with two
single exceptions). Moreover, our proposal ensures that this type of splits will
not appear in top level nodes of the trees'?, which fulfills the user’s expectations
in terms of interpretability of the models. In effect, going back to the Machine
example, with our proposal we would not have a root node isolating the four
outliers (as with the alternative of allowing end-cut splits), but they would still
be isolated in lower levels of the tree!?.

What this comparison also shows is that our proposal can outperform the
method of allowing end-cut splits in several data sets. It is interesting to observe
that most of these 16 cases are included in the set of 17 significant losses of the
alternative allowing end-cut splits shown in Table 2.

1 We have used the value of 10 for this threshold.

12 Unless the training sample is less than 100 cases, which is not the case in all but
four of our 63 benchmark data sets (c.f. Table 1).

'3 Unless the data set is very small.

14 Namely, the root node would consist of the split MM AX < 28000, which divides the
209 training cases in 182 and 27, respectively, and then the 27 cases (that include
the 4 outliers) would be split with the end-cut test MM AX < 48000 ( c.f. Figure 1
to understand what is being done with these splits).



The results of comparing our method to the alternative of not allowing end-
cut splits are shown in Table 4.

| 99% I Not significant
22 2 13
Our Method|Ad,AP,B32,Chl,CD,CO2,CW,D2, Ac,A2,A3,A5 A6,A7,
Wins FD,FS,FTo,FTw,He,Ma,MLMT,| FC,H8 |DE,DN,H16,In,Mkt,AP,Tr
An,Se,SAc,SAn,SV, TS
10 4 12
No End-Cut 1KM,Ai,B8,CH,CA, Ab,A4,AM,Ch,CN,DA,
Wins CS,ELFrKi,Pu32 A1,Fa,Pu8Py| Di,Ho,MV,Em,Te, WBC

Table 4. Our method compared to not allowing end-cut splits in terms of NMSE.

Once again we observe a clear advantage of our proposal (24 significant wins),
although there are still 14 data sets where not allowing end-cut splits seems to
be preferable. However, comparing to the alternative of always allowing end-cut
splits, which has clear disadvantages from the user interpretability perspective,
our method clearly recovers some of the significant losses (c.f. Table 2). It is
also interesting to remark that with the single exception of the H8 data set, all
22 wins of the strategy using end-cut splits over the no-end-cuts approach, are
included in the 24 wins of our proposal. This means that our method fulfills our
objective of being able to take advantage of the gains in accuracy entailed by
the use of end-cut splits, in spite of not using them in top levels of the trees.

In spite of the advantages of our proposal, there are also some drawbacks
that should be considered. Namely, there is a tendency for producing larger
trees (in terms of number of leaves) than with the other two alternatives that
were considered in this study. This is reflected in the results shown in Table 5,
that presents the comparison in terms of number of leaves of our proposal with
the other two alternatives.

No End-Cut Splits All End-Cut Splits
99%]95%|Not significant[99%]95%|Not significant
Our Wins | 23 | 2 3 1 0 15
Our Losses| 31 | 0 5 20| 2 25

Table 5. Tree size comparison of our method with the other two alternatives.

These results seem to contradict our goal of a method that produces trees
more interpretable to the user than the trees obtained when allowing end-cut
splits. Interpretability is known to be a quite subjective issue. Still, we claim that
in spite of having a larger number of leaves (c.f. Table 5), the trees obtained with



our method are more comprehensible. As we have mentioned before, in most real-
world large data sets, the trees obtained by this type of systems are too large
for any user to be able to grasp all details. As such, we argue that only top-level
nodes are in effect “understood” by the user. As our method does not allow
end-cut splits in these top level nodes, we claim that this leads to trees that are
more comprehensible to the user.

5 Discussion

The results of our empirical study on the effects of end-cut preference within
least squares regression trees, lead us to the conclusion that there is no clear
winner among the two standard alternatives of allowing or not allowing the use
of end-cut splits. These results are somehow surprising given the usual position
regarding the use of these splits. However, our study confirms the impact of the
method used to handle these splits on the predictive accuracy of least squares
regression trees. Our analysis of the reasons for the observed results indicates
that this study should not be generalized over other types of trees (namely
classification trees).

The method we have proposed to handle end-cut splits is based on the anal-
ysis of the requirements of users in terms of interpretability, and also on the
results of our empirical study. By allowing end-cut splits only in lower levels of
the trees, we have shown that it is possible to outperform the other two alter-
natives considered in the study in terms of predictive accuracy. Moreover, this
method avoids end-cut splits in top level nodes which goes in favor of user expec-
tations in terms of comprehensibility of the trees. However, our results also show
that there is still some space for improvements in terms of predictive accuracy
when compared to the alternative of not allowing end-cut splits. Future work,
should be concentrated in trying to find not so ad-hoc methods of controlling
these splits so as to avoid some of the still existing significant losses in terms of
predictive accuracy. Moreover, the bad results in terms of tree size should also
be considered for future improvements of our proposal.

6 Conclusions

We have described an empirical study of the effect of end-cut preference in the
context of least squares regression trees. End-cut splits have always been seen
as something to avoid in tree-based models. The main conclusion of our ex-
perimental study is that this assumption should be reconsidered if one wants
to maximize the predictive accuracy of least squares regression trees. Our re-
sults show that allowing end-cut splits leads to statistically significant gains in
predictive accuracy on 22 out of our 63 benchmark data sets. In spite of the
disadvantages of end-cut splits in terms of the interpretability of the trees from
the user perspective, these experimental results should not be disregarded.

We have described a new form of dealing with end-cut splits that tries to take
into account our empirical observations. The simple method we have described



shows clear and statistically significant improvements in terms of predictive ac-

curacy. Still, we have also observed that there is space for further improvements.
Future work should try to improve the method we have described, and also

to carry out similar studies for tree-based models using different error criteria.
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