CG – T13 – Curves

L:CC, MI:ERSI

Miguel Tavares Coimbra (course and slides designed by Verónica Costa Orvalho)

Suggested reading

- Shirley et al., "Fundamentals of Computer Graphics", 3rd Edition, CRC Press
 - Chapter 15 Curves

agenda

- 1. introduction
- 2. curves
- 3. surfaces

surface modeling using polygon mesh

surface modeling using polygon mesh

surface modeling using polygon mesh

windged-edge representation

hard to iterate

surface modeling using polygon mesh

collection of edges, vertices and faces, where:

- . each edge shares at most 2 faces
- . a vertex shares at least 2 edges

surface modeling using polygon mesh

collection of edges, vertices and faces, where:

- . each edge shares at most 2 faces
- . a vertex shares at least 2 edges

windged-edge representation

hard to iterate

surface modeling using polygon mesh

how can we represent a curve surface?

2D representation of a curve surface

surface modeling using polygon mesh

how can we represent a curve surface?

2D representation of a curve surface

surface modeling using polygon mesh

how can we represent a curve surface?

2D representation of a curve surface

surface modeling using polygon mesh

how can we represent a curve surface?

linear approximation to curves or surfaces

polygon meshs are hard to represent curved surfaces

2D representation of a curve surface

1. more compact representation than polygons

1. more compact representation than polygons

2. scalable geometric primitive

- 1. more compact representation than polygons
- 2. scalable geometric primitive
- 3. smoother and more continuous primitives than lines and polygons

- 1. more compact representation than polygons
- 2. scalable geometric primitive
- 3. smoother and more continuous primitives than lines and polygons
- 4. faster and simpler animation and collision detection

advantage

makes real-time CG applications:

- > faster
- > simpler to code
- > last longer (survive graphic HW generations)

where we use curves?

model <u>complex</u> object, using <u>simple</u> pieces

DEMO + IMAGES in Maya

what is a good curve representation?

- . smooth and continuous
- allow local control of shape, so it is easy to create and edit
- . stable, no oscillation
- . easy to evaluate and render
- . easy to compute derivatives

1. Explicit

2. Implicit

3. Parametric

Explicit:
$$y = f(x)$$

 $y = mx + b$

. easy to generate points

Explicit:
$$y = f(x)$$

 $y = mx + b$

. easy to generate points

big limitations

1) 2)

Explicit:
$$y = f(x)$$

 $y = mx + b$

. easy to generate points

big limitations

- . must be represented by multiple curve segments
- . is impossible to get multiple values of **y** for a unique **x**

Explicit:
$$y = f(x)$$

 $y = mx + b$

. easy to generate points

big limitations

- . must be represented by multiple **curve segments**
- . is impossible to get multiple values of **y** for a unique **x**

- . vertical lines are very hard
- a slope of infinity is hard to represent, so vertical tangents are difficult to get

Explicit:
$$y = f(x)$$

 $y = mx + b$

. easy to generate points

in 3D:

$$y = f(x)$$
 and $y = g(x)$

Implicit: f(x,y,z) = 0

- . easy to test if point on the curve
- . normals are easy to compute

Implicit: f(x,y,z) = 0

- . easy to test if point on the curve
- . normals are easy to compute

creating a circle $x^2+y^2-r^2=0$

Implicit: f(x,y,z) = 0

- . easy to test if point on the curve
- . normals are easy to compute

creating a circle $x^2+y^2-r^2=0$

how do we model half circle?

Implicit: f(x,y,z) = 0

- . easy to test if point on the curve
- . normals are easy to compute

creating a circle $x^2+y^2-r^2=0$

how do we model half circle?

add constraints $x \ge 0$

Implicit: f(x,y,z) = 0

- . easy to test if point on the curve
- . normals are easy to compute

<u>limitations</u>

Implicit: f(x,y,z) = 0

- . easy to test if point on the curve
- . normals are easy to compute

<u>limitations</u>

- . constraints NOT included in implicit eq.
- . difficult to determine tangent direction, then it is hard to join curve segments
- . one equation might have more than 1 solution
- . hard to generate points

Parametric: (x,y,z) = (x(t), y(t),z(t))

- . separate equation for each spatial value
- . easy to generate points
- . replace the use of slopes (may be ∞) with parametric tangent vectors

Parametric: (x,y,z) = (x(t), y(t),z(t))

- . separate equation for each spatial value
- . easy to generate points
- . replace the use of slopes (may be ∞) with parametric tangent vectors

how?

$$p(t) = [x(t), y(t), z(t)]^T$$

Parametric: (x,y,z) = (x(t), y(t),z(t))

- . separate equation for each spatial value
- . easy to generate points
- . replace the use of slopes (may be ∞) with parametric tangent vectors

how?

A parametric curve describes points using some formula as a function of a parameter \boldsymbol{t}

$$p(t)=[x(t),y(t),z(t)]^{T}$$

Parametric: (x,y,z) = (x(t), y(t),z(t))

- . separate equation for each spatial value
- . easy to generate points
- . replace the use of slopes (may be ∞) with parametric tangent vectors

how?

Each curve segment is given by 3 functions that are a polynomial:

$$x=x(t)$$
 $y=y(t)$ $z=z(t)$

$$p(t)=[x(t),y(t),z(t)]^{T}$$

Parametric: (x,y,z) = (x(t), y(t),z(t))

- . separate equation for each spatial value
- . easy to generate points
- . replace the use of slopes (may be ∞) with parametric tangent vectors

$$p(t)=[x(t),y(t),z(t)]^{T}$$

curve representation: summary

Explicit: y = f(x)

$$y = mx + b$$

- . easy to generate points
- . limitation: vertical lines, circles

Implicit: f(x,y,z) = 0

- . easy to test if point on the curve
- . normals are easy to compute
- . hard to generate points

Parametric:
$$(x,y,z) = (x(u), y(u),z(u))$$

. easy to generate points

curve representation: summary

Explicit: y = f(x)

$$y = mx + b$$

- . easy to generate points
- . limitation: vertical lines, circles

Implicit: f(x,y,z) = 0

- . easy to test if point on the curve
- . normals are easy to compute
- . hard to generate points

Parametric:
$$(x,y,z) = (x(u), y(u), z(u))$$

. easy to generate points

use:

. move the viewer or object along a predefined path (changes in position and orientation)

. render hair

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter23.html Hubert Nguyen, William Donnely, <u>Hair Animation and Rendering in the Nalu Demo</u>,

NVIDIA Corporation, Ch. 23, GPU Gems 2

http://www.youtube.com/watch?v=0RBqpQhj4X8

© 2005 NVIDIA Corporation.

example:

- . assume a camera should move between 2 points in one second.
- . rendering 1 frame takes 50 ms
- => we will be able to render 20 frames in one second

example:

- . assume a camera should move between 2 points in one second.
- . NOW, if 1 frame takes 25 ms, and we are able to render 40 frames in 1 second
- => to how many locations we need to move the camera?

example:

- . assume a camera should move between 2 points in one second.
- . NOW, if 1 frame takes 25 ms, and we are able to render 40 frames in 1 second
- => to how many locations we need to move the camera?

we conclude

a parametric curve describes points using some formula as a function of a parameter t

we conclude

a parametric curve describes points using some formula as a function of a parameter t

$$p(t)$$
 returns a point for each value of t

we conclude

a parametric curve describes points using some formula as a function of a parameter t

$$p(t)$$
 returns a point for each value of t

 $t \in [a,b] \longrightarrow \text{domain interval}$

we conclude

a parametric curve describes points using some formula as a function of a parameter t

$$p(t)$$
 returns a point for each value of t

$$t \in [a,b] \longrightarrow \text{domain interval}$$

$$\lambda \Rightarrow 0$$
 then $p(t+\lambda) \Rightarrow p(t)$

If λ is a very small number, then p(t) and $p(t+\lambda)$ are two points very close to each other

1st degree y=ax+b exact fit through 2 points

1st degree
$$y=ax+b$$
 exact fit through 2 points

$$2^{nd}$$
 degree $y=ax^2+bx+c$ exact fit 3 points

1st degree
$$y=ax+b$$
 exact fit through 2 points

2nd degree
$$y=ax^2+bx+c$$
 exact fit 3 points

3rd degree $y=ax^3+bx^2+cx+d$ exact fit 4 points or constraints (constrain: point, curvature, angle)

1st degree
$$y=ax+b$$
 exact fit through 2 points

2nd degree
$$y=ax^2+bx+c$$

exact fit 3 points

3rd degree $y=ax^3+bx^2+cx+d$ exact fit 4 points or constraints (constrain: point, curvature, angle)

n- degree ... n+1 constraints

lower degree (eg. 2nd degree - quadratic)

- . little flexibility to control the shape of the curve
- . changing one control points affects all curve
- . few degrees of freedom

lower degree (eg. 2nd degree - quadratic)

- . little flexibility to control the shape of the curve
- . changing one control points affects all curve
- . few degrees of freedom

high degree (eg. 4th degree - quartic)

- . required more computation
- . too many degrees of freedom, then hard to control, high oscillatory.

which is the best approach?

lower degree (eg. 2nd degree - quadratic)

- . little flexibility to control the shape of the curve
- . changing one control points affects all curve
- . few degrees of freedom

high degree (eg. 4th degree - quartic)

- . required more computation
- . too many degrees of freedom, then hard to control, high oscillatory.

cubic polynomial

<u>linear interpolation</u>:

straight line between 2 points, p_0 and p_1

<u>linear interpolation</u>:

straight line between 2 points, p_0 and p_1

p(t) : controls where on the line the point p(t) will land

$$p(0)=p_0, p(1)=p_1$$
 and $0 < t < 1$

example:

if you would like to move the camera from p_0 to p_1 linearly in 20 steps during 1 second which are the values for t?

$$t_i = i/(20-1)$$

 $p(t_i) = (1-t_i)p_0 + t_i(p_1)$

$$t_i \in [0,1]$$

i: frame number

example:

if you would like to move the camera from p_0 to p_1 linearly in 20 steps during 1 second which are the values for t?

$$t_i = i/(20-1)$$

 $p(t_i) = (1-t_i)p_0 + t_i(p_1)$

$$t_i \in [0,1]$$

i: frame number

but, for more points on a path what happens?

example:

if you would like to move the camera from p_0 to p_1 linearly in 20 steps during 1 second which are the values for t?

$$t_i = i/(20-1)$$

 $p(t_i) = (1-t_i)p_0 + t_i(p_1)$

$$t_i \in [0,1]$$

i: frame number

example:

if you would like to move the camera from p_0 to p_1 linearly in 20 steps during 1 second which are the values for t?

$$t_i = i/(20-1)$$

 $p(t_i) = (1-t_i)p_0 + t_i(p_1)$

$$t_i \in [0,1]$$

i: frame number

0) curve defined by 3 control points: a, b, c

- 0) curve defined by 3 control points: a , b , c
- 1) we want to find the point on the curve for parameter t=1/3

- 0) curve defined by 3 control points: a , b , c
- 1) we want to find the point on the curve for parameter t=1/3
- 2) linearly interpolation between a and b to get d

- 0) curve defined by 3 control points: a , b , c
- 1) we want to find the point on the curve for parameter t=1/3
- 2) linearly interpolation between a and b to get d
- 3) linearly interpolation between b and c to get e

- 0) curve defined by 3 control points: a , b , c
- 1) we want to find the point on the curve for parameter t=1/3
- 2) linearly interpolation between a and b to get d
- 3) linearly interpolation between b and c to get e
- 4) the point p(1/3)=f is found by interpolating d and e

- 0) curve defined by 3 control points: a , b , c
- 1) we want to find the point on the curve for parameter t=1/3
- 2) linearly interpolation between a and b to get d
- 3) linearly interpolation between b and c to get e
- 4) the point p(1/3)=f is found by interpolating d and e

General: p(t)=f

$$p(t)=(1-t)d+te$$

$$=(1-t)[(1-t)a+tb]+t[(1-t)b+tc]$$

$$=(1-t)^{2}a+2(1-t)tb+t^{2}c$$

we obtain a **parabola**, the maximum degree of t is 2 (quadratic)

given n+1 control points, the degree of the curve is n

more control points gives the curve more degrees of freedom

repeated linear interpolation from 5 control points, gives a 4th degree curve (quartic)

repeated linear interpolation from 5 control points, gives a 4th degree curve (quartic)

at the 1st point the curve is tangent to the line between the 1st and 2nd point. Same to the end of the curve

repeated linear interpolation from 5 control points, gives a 4th degree curve (quartic)

at the 1st point the curve is tangent to the line between the 1st and 2nd point. Same to the end of the curve

$$p_i^k(t) = (1-t)p_i^{k-1}(t) + tp_{i+1}^{k-1}(t)$$
 $k=1...n \longrightarrow \# \text{ of linear interpolations}$
 $i=0...n-k \longrightarrow \# \text{ of control points}$
 $p_i^k \longrightarrow \text{Intermediate control points}$
 $p(t)=p_0^n(t) \longrightarrow \text{ describes a point on the curve}$

Bézier curves

$$p_i^k(t) = (1-t)p_i^{k-1}(t) + tp_{i+1}^{k-1}(t)$$

For
$$k=1 \rightarrow p_0^1 = (1-t)p_0^0 + tp_1^0$$

$$p_1^1 = (1-t)p_1^0 + tp_2^0$$

For
$$k=2 \rightarrow p_0^2 = (1-t)p_0^1 + tp_1^1$$

read diagram from bottom to top (quartic, 5 control points)

k=1...n # of linear interpolations

Bézier curves

- . control points: p_{0} , p_{1} , p_{2} , p_{3}
- . $p_{\scriptscriptstyle 1}, p_{\scriptscriptstyle 2}$ are used to calculate the tangent
- . the curve only pass through the end points

all points of curve inside convex hull of control points

$$p(t) = (1-t)^3 p_0 + 3t(1-t)^2 p_1 + 3t^2(1-t)p_2 + t^3 p_3$$

$$p(t) = (1 \ t \ t^2 \ t^3) \begin{pmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{pmatrix} \begin{pmatrix} p_0 \\ p_1 \\ p_2 \\ p_3 \end{pmatrix}$$

cubic blending function n=3

some interesting properties:

- . you can directly rotate the control points and then compute the curve, instead of computing points on a Bezier and then rotating (MUCH FASTER)
- . uses DOT PRODUCT instead of SCALAR operations

downside:

. curve dosen't pass through all the control points

which can be a possible solution?

downside:

. curve dosen't pass through all the control points

which can be a possible solution?

- . use a lower degree curve between each pair of subsequent control points.
- . check if the piecewise interpolation has high enough degree of continuity.

continuous in **position**

continuous in position and tangent vector

 $C^0 \wedge C^1 \wedge C^2$ continuity

continuous in position, tangent vector and curvature

sudden jerk at the join

 C^0 continuity

continuous in position

the segment should join at the same point, so linear interpolation fulfills this condition

$$q_3 = r_0$$

tangents at the join parallel and equal in length

 G^1 continuity

continuous in **position** and **tangent vector**

must be parallel and have the same direction, nothing about the length

$$(r_1-r_0)=c(q_3-q_2)$$
 for $c>0$

$$c = (t_2 - t_1)/(t_1 - t_0)$$

tangents at the join parallel and double in length

 C^1 continuity

continuous in **position** and tangent vector, stronger than G^1

 C^0 continuity

continuous in **position**

 G^1 continuity

continuous in position and tangent vector

 C^1 continuity

continuous in position and tangent vector, stronger than G_1

other curves

- . Hermite Splines
- . Catmull-Rom Splines
- . Natural Cubic Splines
- . B-Splines
- . NURBS

other curves

- . Hermite Splines
- . Catmull-Rom Splines
- . Natural Cubic Splines
- . B-Splines
- . NURBS

Hermite Splines or Cubic splines

simpler to control than Bezier

defined by:

- . starting and end points
- . and starting and end tangents

Hermite Splines

$$\begin{split} p(t) &= (2\mathbf{t}^3 - 3\mathbf{t}^2 + 1) p_0 + (t^3 - 2\mathbf{t}^2 + t) m_0 + (t^3 - t^2) m_1 + (-2\mathbf{t}^3 + 3\mathbf{t}^2) p_1 \\ p(0) &= p_{0,} p(1) = p_1 \\ (\partial p/\partial t)(0) &= m_{0,} (\partial p/\partial t)(0) = m_{1,} \end{split}$$

Hermite Splines or Cubic splines

why Hermit Splines are cubic interpolation?

$$p(t) = (2t^3 - 3t^2 + 1)p_0 + (t^3 - 2t^2 + t)m_0 + (t^3 - t^2)m_1 + (-2t^3 + 3t^2)p_1$$

Hermite Splines or Cubic splines

why Hermit Splines are cubic interpolation?

because the highest exponent on the blending function is t^3

$$p(t) = (2t^3 - 3t^2 + 1)p_0 + (t^3 - 2t^2 + t)m_0 + (t^3 - t^2)m_1 + (-2t^3 + 3t^2)p_1$$

Catmull-Rom Splines

- . the spline passes through all of the control points
- . C^1 continuous, there are no discontinuities in the tangent direction and magnitude

B-Splines

- . no interpolation
- . the curve passes near the control points (use interactive placement, it is hard to know where the curve will go)
- . C^2 continuous to compensate the loss of interpolation

example effect + curve

http://www.digitalartform.com/archives/images/dripDemo.jpg