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what we know so far?
day 1: 

surface modeling using
polygon mesh

 how can we represent a curve surface?

polygon meshs are 
hard to represent 
curved surfaces

2D representation of a curve surface

linear approximation to 
curves or surfaces



  

day 1: 
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2. scalable geometric primitive
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1. more compact representation than  
polygons

2. scalable geometric primitive

3. smoother and more continuous 
primitives than lines and polygons

4. faster and simpler animation and 
collision detection

why using curves and curve  surfaces?



  

advantage

makes real-time CG applications:

> faster
> simpler to code
> last longer 
      (survive graphic HW generations)



  

where we use curves?

model complex object, 
using simple pieces

DEMO + IMAGES                            
in Maya                            



  

what is a good curve representation?

. smooth and continuous

. allow local control of shape, so it is easy 
  to create and edit
. stable, no oscillation 
. easy to evaluate and render
. easy to compute derivatives



  

curve representation

1. Explicit

2. Implicit

3. Parametric
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curve representation

Explicit:  y = f(x)
y = mx + b

X

Y

X

Y

X

Y

X

Y

. must be represented by 
multiple curve segments

. is impossible to get 
multiple values of y for a 
unique x

. easy to generate points

big limitations

1) 2) . vertical lines are very hard

. a slope of infinity is hard 
to represent, so vertical 
tangents are difficult to get 



  

curve representation

Explicit:  y = f(x)
y = mx + b

X

Y

X

Y

. easy to generate points

in 3D: 
y = f(x) and y = g(x)

X

Y

Z
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curve representation

Implicit:  f(x,y,z) = 0

X

Y

. easy to test if point on the curve

. normals are easy to compute

x2y2−r2=0creating a circle

how do we model half circle?

add constraints x0
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curve representation

Implicit:  f(x,y,z) = 0
. easy to test if point on the curve
. normals are easy to compute

limitations

. constraints NOT included in implicit eq.
       

. difficult to determine tangent direction, then it is
  hard to join curve segments
 

. one equation might have more than 1 solution
       

. hard to generate points



  

curve representation

Parametric:  (x,y,z) = (x(t), y(t),z(t))
. separate equation for each spatial value
. easy to generate points
. replace the use of slopes (may be ∞) with 
parametric tangent vectors

XZ
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curve representation

Parametric:  (x,y,z) = (x(t), y(t),z(t))
. separate equation for each spatial value
. easy to generate points
. replace the use of slopes (may be ∞) with 
parametric tangent vectors

X

Y

Z

·p t

x=xt y=y t z=z t
p t =[x t , y t  , z t]T

how ?
Each curve segment is given by 
3 functions that are a polynomial:



  

curve representation

Parametric:  (x,y,z) = (x(t), y(t),z(t))
. separate equation for each spatial value
. easy to generate points
. replace the use of slopes (may be ∞) with 
parametric tangent vectors

X

Y

Z

·p t

p t =[x t , y t  , z t]T

X

Y

t=0·
t=/2·

·t=



  

curve representation: summary

Parametric:  (x,y,z) = (x(u), y(u),z(u))
. easy to generate points

Implicit:  f(x,y,z) = 0
. easy to test if point on the curve
. normals are easy to compute
. hard to generate points
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Explicit:  y = f(x)
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. limitation: vertical lines, circles
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parametric curves

use:
. move the viewer or object along a predefined path  
  (changes in position and orientation)

    

. render hair
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter23.html
Hubert Nguyen, William Donnely, Hair Animation and Rendering in the Nalu Demo, 
NVIDIA Corporation, Ch. 23, GPU Gems 2
http://www.youtube.com/watch?v=0RBqpQhj4X8

 © 2005 NVIDIA Corporation.

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter23.html
http://www.youtube.com/watch?v=0RBqpQhj4X8


  

parametric curves

example:
. assume a camera should move between 2 points in 
one second. 
. rendering 1 frame takes 50 ms
=> we will be able to render 20 frames in one second

·p1
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parametric curves

example:
. assume a camera should move between 2 points in 
one second. 
. NOW, if 1 frame takes 25 ms, and we are able to 
render 40 frames in 1 second
=> to how many locations we need to move 
the camera ?

·p1

·p2
p t

to 40 different locations
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parametric curves

we conclude
a parametric curve describes points using 

some formula as a function of a parameter t

p t  returns a point for 
each value of 

t∈[a,b]

⇒0 then p t⇒pt

domain interval

If     is a very small number, then        and     
are two points very close to each other
 p t 

p t

p t·

·a=p tmin

·b=p tmax

p t·t
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curves: polynomial interpolation

1st  degree
 exact fit through 2 points

y=axb

2nd  degree
 exact fit 3 points

y=ax2bxc

3rd degree
 exact fit 4 points or constraints
(constrain: point, curvature, angle)

y=ax3bx2cxd

n- degree ... n+1 constraints
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 . few degrees of freedom
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 . little flexibility to control the shape of the curve
 . changing one control points affects all curve
 . few degrees of freedom

high degree (eg. 4th degree - quartic)
 . required more computation
 . too many degrees of freedom, then hard to control, 
   high oscillatory.

which is the best approach?



  

curves: polynomial interpolation

lower degree (eg. 2nd degree - quadratic)
 . little flexibility to control the shape of the curve
 . changing one control points affects all curve
 . few degrees of freedom

high degree (eg. 4th degree - quartic)
 . required more computation
 . too many degrees of freedom, then hard to control, 
   high oscillatory.

cubic polynomial 



  

Bézier curves

linear interpolation:
straight line between 2 points,      and

t∈[0,1]

p0 p1

p t =p0t p1−p0

1−t p0t p1= p t

p0

p1



  

linear interpolation:
straight line between 2 points,      and

t∈[0,1]

p0 p1

p t =p0t p1−p0

1−t p0t p1=

p t  : controls where on the line the    
  point        will landp t 

p 0=p0 p 1=p1 0t1,              and

p t

p0

p1

Bézier curves



  

example:
   

if you would like to move the camera from
       to       linearly in 20 steps during 1 second 
which are the values for      ?

ti∈[0,1]

p0 p1

ti=i/20−1
p t i=1−t ip0t ip1

p ti

p0

p1

i: frame number

t

Bézier curves



  

example:
   

if you would like to move the camera from
       to       linearly in 20 steps during 1 second 
which are the values for      ?
p0 p1

ti=i/20−1
p t i=1−t ip0t ip1

t

but, for more points on 
a path what happens?

p ti

p0

p1

ti∈[0,1]
i: frame number

Bézier curves



  

example:
   

if you would like to move the camera from
       to       linearly in 20 steps during 1 second 
which are the values for      ?
p0 p1

ti=i/20−1
p t i=1−t ip0t ip1

t

p ti

p0

p1

ti∈[0,1]
i: frame number

Bézier curves



  

example:
   

if you would like to move the camera from
       to       linearly in 20 steps during 1 second 
which are the values for      ?
p0 p1

ti=i/20−1
p t i=1−t ip0t ip1

t

linearly interpolate 
repeatedly

p ti

p0

p1

ti∈[0,1]
i: frame number

Bézier curves



  

to obtain a smooth curve: 
interpolate repeatedly

··

· ·

Bézier curves



  

to obtain a smooth curve: 
interpolate repeatedly

··

· ·

goal: avoid discontinuity 
         at the joints

Bézier curves



  · ·

·

a c

b

Bézier curves
0) curve defined by 3 control points: a,b ,c
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Bézier curves
0) curve defined by 3 control points: a,b ,c

·t=1/3



  

1) we want to find the point on the curve for parameter

2) linearly interpolation between       and        to get

· ·

·

a c

b

t=1/3

Bézier curves
0) curve defined by 3 control points: a,b ,c

·

a b d

d· t=1/3



  

1) we want to find the point on the curve for parameter

2) linearly interpolation between       and        to get
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Bézier curves
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1) we want to find the point on the curve for parameter

2) linearly interpolation between       and        to get
     

3) linearly interpolation between       and        to get
             

4) the point                 is found
by interpolating     and

· ·

·

a c

b

t=1/3

Bézier curves
0) curve defined by 3 control points: a,b ,c

·f =p 1/3

a b d

f =p 1/3
d·

b c e

e·
p 1 /3= f

d e



  

1) we want to find the point on the curve for parameter

2) linearly interpolation between       and        to get
     

3) linearly interpolation between       and        to get
             

4) the point                 is found
by interpolating     and

General: · ·

·

a c

b

t=1/3

Bézier curves
0) curve defined by 3 control points: a,b ,c

·f =p 1/3

a b d

f =p 1/3
d·

b c e

e·
p 1 /3= f

d e

p t = f



  

·
· ·

·

a

f =p 1/3

c

d

e

b

1/3

1/3

1/3

2/3
2/3

2/3

p t =1−t dte
1−t [1−t atb]t [1−t btc]
1−t 2a21−t tbt2c

=
=

we obtain a parabola, the 
maximum degree of    is 2 
(quadratic)

given         control points, 
the degree of the curve is

t

n1
n

more control points gives the curve more degrees of freedom

Bézier curves



  

repeated linear interpolation from 5 control points, 
gives a 4th degree curve (quartic)

·

·
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·

Bézier curves



  

repeated linear interpolation from 5 control points, 
gives a 4th degree curve (quartic)

at the 1st point the curve is tangent to the line between 
the 1st and 2nd point. Same to the end of the curve

·

·

· ·

·

Bézier curves



  

pi
kt =1−tpi

k−1t tpi1
k−1t 

repeated linear interpolation from 5 control points, 
gives a 4th degree curve (quartic)

at the 1st point the curve is tangent to the line between 
the 1st and 2nd point. Same to the end of the curve

·

·

· ·

·
k=1...n
i=0...n−k

# of linear interpolations

# of control points

pi
k Intermediate control points

p t =p0
n t  describes a point on the curve

Bézier curves



  

pi
kt =1−tpi

k−1t tpi1
k−1t 

For

For 

k=1

·

·

· ·

·

p0

p1

p2

p3
p4

p0
1=1−t p0

0tp1
0

p1
1=1−t p1

0tp2
0

k=2 p0
2=1−t p0

1tp1
1

p0
0 p1

0 p2
0 p3

0 p4
0

p0
1 p1

1 p2
1 p3

1

p0
2 p1

2 p2
2

p0
3 p1

3

p0
4

1−t

1−t

1−t

1−t

1−t

1−t

1−t 1−t

1−t

1−t
t

t

t

t

t

t

t t t

t

read diagram from 
bottom to top 
(quartic, 5 control points)

Bézier curves

k=1...n # of linear interpolations



  

Bézier curves

. control points: 
   

.          are used to calculate the tangent
   

. the curve only pass through the end points

p0,p1,p2,p3

p1,p2

all points of curve inside 
convex hull of control points



  

Bézier curve: cubic polynomial

cubic blending 
function
n=3

p t =1−t 3p03t 1−t 2p13t2 1−tp2t3p3

p t =1 t t2 t3
1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1

p0
p1
p2
p3



  

Bézier curve: cubic polynomial

some interesting properties:

. you can directly rotate the control points and then 
compute the curve, instead of computing points on a 
Bezier and then rotating (MUCH FASTER)

. uses DOT PRODUCT instead of SCALAR operations



  

Bézier curve: cubic polynomial

downside:

. curve dosen't pass through all the control points

 which can be a possible solution?



  

Bézier curve: cubic polynomial

downside:

. curve dosen't pass through all the control points

 which can be a possible solution?

. use a lower degree curve between each pair of 
subsequent control points. 

. check if the piecewise interpolation has high enough 
degree of continuity.



  

piecewise polynomials

join curves or curve segments nicely



  

piecewise polynomials

continuity

continuous in 
position

join curves or curve segments nicely

C0



  

piecewise polynomials

continuityC0 continuityC0∧C1

continuous in 
position

continuous in 
position and
tangent vector

join curves or curve segments nicely



  

piecewise polynomials

continuityC0 continuityC0∧C1 continuityC0∧C1∧C2

continuous in 
position

continuous in 
position and
tangent vector

continuous in 
position,
tangent vector 
and curvature

join curves or curve segments nicely



  

piecewise polynomials

continuityC0 continuous in position

the segment should join at the same 
point, so linear interpolation fulfills this 
condition

sudden jerk at the join

q0

q1

q2 q3

r1

r2
r3

r0

t=0

t=1

q3=r0



  

piecewise polynomials

continuityG1 continuous in position and 
tangent vector

must be parallel and have the same 
direction, nothing about the length

tangents at the join parallel and equal in length

q0

q1

q2
q3

r1

r2
r3

r0

t=0

t=1

r1−r0=c q3−q2 for c0

c=t2−t1/t1−t0

t=2



  

piecewise polynomials

continuityC1 continuous in position and 
tangent vector, stronger than

tangents at the join parallel and double in length

q0

q1

q2
q3

r1

r2
r3

r0

t=0

t=1

t=2 G1



  

piecewise polynomials

continuityC1

continuous in 
position and 
tangent vector, 
stronger than

q0

q1

q2
q3

r1

r2
r3

r0

t=0

t=1

t=2

G1

continuityG1

q0

q1

q2
q3

r1

r2
r3

r0

t=0

t=1

t=2

continuous in 
position and 
tangent vector

continuityC0

q0

q1

q2 q3

r1

r2
r3

r0

t=0

t=1

continuous in 
position 



  

other curves

. Hermite Splines

. Catmull-Rom Splines

. Natural Cubic Splines

. B-Splines
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 Hermite Splines or Cubic splines

defined by: 
. starting and end points
. and starting and end tangents

simpler to control than Bezier



  

 Hermite Splines

p t =2t3−3t21p0t3−2t2t m0t3−t2m1−2t33t2p1

p 0=p0,p 1=p1

∂p /∂t 0=m0,∂p /∂ t0=m1,
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 Hermite Splines or Cubic splines

p t =2t3−3t21p0t3−2t2t m0t3−t2m1−2t33t2p1

why Hermit Splines 
are cubic 

interpolation?
because the highest 

exponent on the 
blending function is t3



  

 Catmull-Rom Splines

. the spline passes through all of the control points

.     continuous, there are no discontinuities in the 
tangent direction and magnitude
C1



  

 B-Splines

. no interpolation

. the curve passes near the control points (use
  interactive placement, it is hard to know where the
  curve will go)
.     continuous to compensate the loss of interpolationC2



  
http://www.digitalartform.com/archives/images/dripDemo.jpg

example effect + curve
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