
L:CC, MI:ERSI

CG – T13 – Curves

Miguel Tavares Coimbra

(course and slides designed by

Verónica Costa Orvalho)

Suggested reading

• Shirley et al., “Fundamentals of Computer

Graphics”, 3rd Edition, CRC Press

– Chapter 15 - Curves

CG 12/13 - T12

agenda
day 1:
1. introduction
2. curves
3. surfaces

what we know so far?
day 1:

surface modeling using
polygon mesh

what we know so far?
day 1:

surface modeling using
polygon mesh

what we know so far?
day 1:

surface modeling using
polygon mesh

hard to iterate
windged-edge
representation

what we know so far?
day 1:

surface modeling using
polygon mesh

collection of edges, vertices and faces, where:
 . each edge shares at most 2 faces
 . a vertex shares at least 2 edges

v1
v2

v3

v4

F2F1

E1

E2

E3

E4

E5

what we know so far?
day 1:

surface modeling using
polygon mesh

collection of edges, vertices and faces, where:
 . each edge shares at most 2 faces
 . a vertex shares at least 2 edges

v1
v2

v3

v4

F2F1

E1

E2

E3

E4

E5

hard to iterate
windged-edge
representation

what we know so far?
day 1:

surface modeling using
polygon mesh

 how can we represent a curve surface?

2D representation of a curve surface

what we know so far?
day 1:

surface modeling using
polygon mesh

 how can we represent a curve surface?

lines
lines strip
triangles
...

2D representation of a curve surface

what we know so far?
day 1:

surface modeling using
polygon mesh

 how can we represent a curve surface?

polygon meshs are
hard to represent
curved surfaces

2D representation of a curve surface

lines
lines strip
triangles
...

what we know so far?
day 1:

surface modeling using
polygon mesh

 how can we represent a curve surface?

polygon meshs are
hard to represent
curved surfaces

2D representation of a curve surface

linear approximation to
curves or surfaces

day 1:
1. more compact representation than
polygons

2. scalable geometric primitive

3. smoother and more continuous
primitives than lines and polygons

4. faster and simpler animation and
collision detection

why using curves and curve surfaces?

day 1:
1. more compact representation than
polygons

2. scalable geometric primitive

3. smoother and more continuous
primitives than lines and polygons

4. faster and simpler animation and
collision detection

why using curves and curve surfaces?

day 1:
1. more compact representation than
polygons

2. scalable geometric primitive

3. smoother and more continuous
primitives than lines and polygons

4. faster and simpler animation and
collision detection

why using curves and curve surfaces?

1. more compact representation than
polygons

2. scalable geometric primitive

3. smoother and more continuous
primitives than lines and polygons

4. faster and simpler animation and
collision detection

why using curves and curve surfaces?

advantage

makes real-time CG applications:

> faster
> simpler to code
> last longer
 (survive graphic HW generations)

where we use curves?

model complex object,
using simple pieces

DEMO + IMAGES
in Maya

what is a good curve representation?

. smooth and continuous

. allow local control of shape, so it is easy
 to create and edit
. stable, no oscillation
. easy to evaluate and render
. easy to compute derivatives

curve representation

1. Explicit

2. Implicit

3. Parametric

curve representation

Explicit: y = f(x)
y = mx + b

X

Y

X

Y

. easy to generate points

curve representation

Explicit: y = f(x)
y = mx + b

X

Y

X

Y

. easy to generate points

big limitations

1) 2)

curve representation

Explicit: y = f(x)
y = mx + b

X

Y

X

Y

X

Y

. must be represented by
multiple curve segments

. is impossible to get
multiple values of y for a
unique x

. easy to generate points

big limitations

1) 2)

curve representation

Explicit: y = f(x)
y = mx + b

X

Y

X

Y

X

Y

X

Y

. must be represented by
multiple curve segments

. is impossible to get
multiple values of y for a
unique x

. easy to generate points

big limitations

1) 2) . vertical lines are very hard

. a slope of infinity is hard
to represent, so vertical
tangents are difficult to get

curve representation

Explicit: y = f(x)
y = mx + b

X

Y

X

Y

. easy to generate points

in 3D:
y = f(x) and y = g(x)

X

Y

Z

curve representation

Implicit: f(x,y,z) = 0
. easy to test if point on the curve
. normals are easy to compute

curve representation

Implicit: f(x,y,z) = 0

X

Y

. easy to test if point on the curve

. normals are easy to compute

x2y2−r2=0creating a circle

curve representation

Implicit: f(x,y,z) = 0

X

Y

. easy to test if point on the curve

. normals are easy to compute

x2y2−r2=0creating a circle

how do we model half circle?

curve representation

Implicit: f(x,y,z) = 0

X

Y

. easy to test if point on the curve

. normals are easy to compute

x2y2−r2=0creating a circle

how do we model half circle?

add constraints x0

curve representation

Implicit: f(x,y,z) = 0
. easy to test if point on the curve
. normals are easy to compute

limitations

curve representation

Implicit: f(x,y,z) = 0
. easy to test if point on the curve
. normals are easy to compute

limitations

. constraints NOT included in implicit eq.

. difficult to determine tangent direction, then it is
 hard to join curve segments

. one equation might have more than 1 solution

. hard to generate points

curve representation

Parametric: (x,y,z) = (x(t), y(t),z(t))
. separate equation for each spatial value
. easy to generate points
. replace the use of slopes (may be ∞) with
parametric tangent vectors

XZ

Y

curve representation

Parametric: (x,y,z) = (x(t), y(t),z(t))
. separate equation for each spatial value
. easy to generate points
. replace the use of slopes (may be ∞) with
parametric tangent vectors

X

Y

Z

·p t

p t =[x t , y t  , z t]T

how ?

curve representation

Parametric: (x,y,z) = (x(t), y(t),z(t))
. separate equation for each spatial value
. easy to generate points
. replace the use of slopes (may be ∞) with
parametric tangent vectors

X

Y

Z

·p t

p t =[x t , y t  , z t]T

how ?

A parametric curve describes
points using some formula as a
function of a parameter t

curve representation

Parametric: (x,y,z) = (x(t), y(t),z(t))
. separate equation for each spatial value
. easy to generate points
. replace the use of slopes (may be ∞) with
parametric tangent vectors

X

Y

Z

·p t

x=xt y=y t z=z t
p t =[x t , y t  , z t]T

how ?
Each curve segment is given by
3 functions that are a polynomial:

curve representation

Parametric: (x,y,z) = (x(t), y(t),z(t))
. separate equation for each spatial value
. easy to generate points
. replace the use of slopes (may be ∞) with
parametric tangent vectors

X

Y

Z

·p t

p t =[x t , y t  , z t]T

X

Y

t=0·
t=/2·

·t=

curve representation: summary

Parametric: (x,y,z) = (x(u), y(u),z(u))
. easy to generate points

Implicit: f(x,y,z) = 0
. easy to test if point on the curve
. normals are easy to compute
. hard to generate points

X

Y

Explicit: y = f(x)
 y = mx + b
. easy to generate points
. limitation: vertical lines, circles

X

Y

X

Y

x2y2−r2=0

X

Y

Z

·p t
p t=[xt  , y t  , z t]T

curve representation: summary

Parametric: (x,y,z) = (x(u), y(u),z(u))
. easy to generate points

X

Y

Z

·p t
p t=[xt  , y t  , z t]T

Implicit: f(x,y,z) = 0
. easy to test if point on the curve
. normals are easy to compute
. hard to generate points

X

Y

Explicit: y = f(x)
 y = mx + b
. easy to generate points
. limitation: vertical lines, circles

X

Y

X

Y

x2y2−r2=0

parametric curves

use:
. move the viewer or object along a predefined path
 (changes in position and orientation)

. render hair
http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter23.html
Hubert Nguyen, William Donnely, Hair Animation and Rendering in the Nalu Demo,
NVIDIA Corporation, Ch. 23, GPU Gems 2
http://www.youtube.com/watch?v=0RBqpQhj4X8

 © 2005 NVIDIA Corporation.

http://http.developer.nvidia.com/GPUGems2/gpugems2_chapter23.html
http://www.youtube.com/watch?v=0RBqpQhj4X8

parametric curves

example:
. assume a camera should move between 2 points in
one second.
. rendering 1 frame takes 50 ms
=> we will be able to render 20 frames in one second

·p1

·p2

parametric curves

example:
. assume a camera should move between 2 points in
one second.
. NOW, if 1 frame takes 25 ms, and we are able to
render 40 frames in 1 second
=> to how many locations we need to move
the camera ?

·p1

·p2
p t

parametric curves

example:
. assume a camera should move between 2 points in
one second.
. NOW, if 1 frame takes 25 ms, and we are able to
render 40 frames in 1 second
=> to how many locations we need to move
the camera ?

·p1

·p2
p t

to 40 different locations

parametric curves

we conclude
a parametric curve describes points using

some formula as a function of a parameter t

parametric curves

we conclude
a parametric curve describes points using

some formula as a function of a parameter t

p t  returns a point for
each value of t

p t·

parametric curves

we conclude
a parametric curve describes points using

some formula as a function of a parameter t

p t  returns a point for
each value of

t∈[a,b] domain interval

t

·a=p tmin

·b=p tmax

p t·

parametric curves

we conclude
a parametric curve describes points using

some formula as a function of a parameter t

p t  returns a point for
each value of

t∈[a,b]

⇒0 then p t⇒pt

domain interval

If is a very small number, then and
are two points very close to each other
 p t 

p t

p t·

·a=p tmin

·b=p tmax

p t·t

curves: polynomial interpolation

curves: polynomial interpolation

1st degree
 exact fit through 2 points

y=axb

curves: polynomial interpolation

1st degree
 exact fit through 2 points

y=axb

2nd degree
 exact fit 3 points

y=ax2bxc

curves: polynomial interpolation

1st degree
 exact fit through 2 points

y=axb

2nd degree
 exact fit 3 points

y=ax2bxc

3rd degree
 exact fit 4 points or constraints
(constrain: point, curvature, angle)

y=ax3bx2cxd

curves: polynomial interpolation

1st degree
 exact fit through 2 points

y=axb

2nd degree
 exact fit 3 points

y=ax2bxc

3rd degree
 exact fit 4 points or constraints
(constrain: point, curvature, angle)

y=ax3bx2cxd

n- degree ... n+1 constraints

curves: polynomial interpolation

lower degree (eg. 2nd degree - quadratic)
 . little flexibility to control the shape of the curve
 . changing one control points affects all curve
 . few degrees of freedom

curves: polynomial interpolation

lower degree (eg. 2nd degree - quadratic)
 . little flexibility to control the shape of the curve
 . changing one control points affects all curve
 . few degrees of freedom

high degree (eg. 4th degree - quartic)
 . required more computation
 . too many degrees of freedom, then hard to control,
 high oscillatory.

which is the best approach?

curves: polynomial interpolation

lower degree (eg. 2nd degree - quadratic)
 . little flexibility to control the shape of the curve
 . changing one control points affects all curve
 . few degrees of freedom

high degree (eg. 4th degree - quartic)
 . required more computation
 . too many degrees of freedom, then hard to control,
 high oscillatory.

cubic polynomial

Bézier curves

linear interpolation:
straight line between 2 points, and

t∈[0,1]

p0 p1

p t =p0t p1−p0

1−t p0t p1= p t

p0

p1

linear interpolation:
straight line between 2 points, and

t∈[0,1]

p0 p1

p t =p0t p1−p0

1−t p0t p1=

p t  : controls where on the line the
 point will landp t 

p 0=p0 p 1=p1 0t1, and

p t

p0

p1

Bézier curves

example:

if you would like to move the camera from
 to linearly in 20 steps during 1 second
which are the values for ?

ti∈[0,1]

p0 p1

ti=i/20−1
p t i=1−t ip0t ip1

p ti

p0

p1

i: frame number

t

Bézier curves

example:

if you would like to move the camera from
 to linearly in 20 steps during 1 second
which are the values for ?
p0 p1

ti=i/20−1
p t i=1−t ip0t ip1

t

but, for more points on
a path what happens?

p ti

p0

p1

ti∈[0,1]
i: frame number

Bézier curves

example:

if you would like to move the camera from
 to linearly in 20 steps during 1 second
which are the values for ?
p0 p1

ti=i/20−1
p t i=1−t ip0t ip1

t

p ti

p0

p1

ti∈[0,1]
i: frame number

Bézier curves

example:

if you would like to move the camera from
 to linearly in 20 steps during 1 second
which are the values for ?
p0 p1

ti=i/20−1
p t i=1−t ip0t ip1

t

linearly interpolate
repeatedly

p ti

p0

p1

ti∈[0,1]
i: frame number

Bézier curves

to obtain a smooth curve:
interpolate repeatedly

··

· ·

Bézier curves

to obtain a smooth curve:
interpolate repeatedly

··

· ·

goal: avoid discontinuity
 at the joints

Bézier curves

 · ·

·

a c

b

Bézier curves
0) curve defined by 3 control points: a,b ,c

1) we want to find the point on the curve for parameter

· ·

·

a c

b

t=1/3

Bézier curves
0) curve defined by 3 control points: a,b ,c

·t=1/3

1) we want to find the point on the curve for parameter

2) linearly interpolation between and to get

· ·

·

a c

b

t=1/3

Bézier curves
0) curve defined by 3 control points: a,b ,c

·

a b d

d· t=1/3

1) we want to find the point on the curve for parameter

2) linearly interpolation between and to get

3) linearly interpolation between and to get

· ·

·

a c

b

t=1/3

Bézier curves
0) curve defined by 3 control points: a,b ,c

·

a b d

d·

b c e

e·
t=1/3

1) we want to find the point on the curve for parameter

2) linearly interpolation between and to get

3) linearly interpolation between and to get

4) the point is found
by interpolating and

· ·

·

a c

b

t=1/3

Bézier curves
0) curve defined by 3 control points: a,b ,c

·f =p 1/3

a b d

f =p 1/3
d·

b c e

e·
p 1 /3= f

d e

1) we want to find the point on the curve for parameter

2) linearly interpolation between and to get

3) linearly interpolation between and to get

4) the point is found
by interpolating and

General: · ·

·

a c

b

t=1/3

Bézier curves
0) curve defined by 3 control points: a,b ,c

·f =p 1/3

a b d

f =p 1/3
d·

b c e

e·
p 1 /3= f

d e

p t = f

·
· ·

·

a

f =p 1/3

c

d

e

b

1/3

1/3

1/3

2/3
2/3

2/3

p t =1−t dte
1−t [1−t atb]t [1−t btc]
1−t 2a21−t tbt2c

=
=

we obtain a parabola, the
maximum degree of is 2
(quadratic)

given control points,
the degree of the curve is

t

n1
n

more control points gives the curve more degrees of freedom

Bézier curves

repeated linear interpolation from 5 control points,
gives a 4th degree curve (quartic)

·

·

· ·

·

Bézier curves

repeated linear interpolation from 5 control points,
gives a 4th degree curve (quartic)

at the 1st point the curve is tangent to the line between
the 1st and 2nd point. Same to the end of the curve

·

·

· ·

·

Bézier curves

pi
kt =1−tpi

k−1t tpi1
k−1t 

repeated linear interpolation from 5 control points,
gives a 4th degree curve (quartic)

at the 1st point the curve is tangent to the line between
the 1st and 2nd point. Same to the end of the curve

·

·

· ·

·
k=1...n
i=0...n−k

of linear interpolations

of control points

pi
k Intermediate control points

p t =p0
n t  describes a point on the curve

Bézier curves

pi
kt =1−tpi

k−1t tpi1
k−1t 

For

For

k=1

·

·

· ·

·

p0

p1

p2

p3
p4

p0
1=1−t p0

0tp1
0

p1
1=1−t p1

0tp2
0

k=2 p0
2=1−t p0

1tp1
1

p0
0 p1

0 p2
0 p3

0 p4
0

p0
1 p1

1 p2
1 p3

1

p0
2 p1

2 p2
2

p0
3 p1

3

p0
4

1−t

1−t

1−t

1−t

1−t

1−t

1−t 1−t

1−t

1−t
t

t

t

t

t

t

t t t

t

read diagram from
bottom to top
(quartic, 5 control points)

Bézier curves

k=1...n # of linear interpolations

Bézier curves

. control points:

. are used to calculate the tangent

. the curve only pass through the end points

p0,p1,p2,p3

p1,p2

all points of curve inside
convex hull of control points

Bézier curve: cubic polynomial

cubic blending
function
n=3

p t =1−t 3p03t 1−t 2p13t2 1−tp2t3p3

p t =1 t t2 t3
1 0 0 0
−3 3 0 0
3 −6 3 0
−1 3 −3 1

p0
p1
p2
p3

Bézier curve: cubic polynomial

some interesting properties:

. you can directly rotate the control points and then
compute the curve, instead of computing points on a
Bezier and then rotating (MUCH FASTER)

. uses DOT PRODUCT instead of SCALAR operations

Bézier curve: cubic polynomial

downside:

. curve dosen't pass through all the control points

 which can be a possible solution?

Bézier curve: cubic polynomial

downside:

. curve dosen't pass through all the control points

 which can be a possible solution?

. use a lower degree curve between each pair of
subsequent control points.

. check if the piecewise interpolation has high enough
degree of continuity.

piecewise polynomials

join curves or curve segments nicely

piecewise polynomials

continuity

continuous in
position

join curves or curve segments nicely

C0

piecewise polynomials

continuityC0 continuityC0∧C1

continuous in
position

continuous in
position and
tangent vector

join curves or curve segments nicely

piecewise polynomials

continuityC0 continuityC0∧C1 continuityC0∧C1∧C2

continuous in
position

continuous in
position and
tangent vector

continuous in
position,
tangent vector
and curvature

join curves or curve segments nicely

piecewise polynomials

continuityC0 continuous in position

the segment should join at the same
point, so linear interpolation fulfills this
condition

sudden jerk at the join

q0

q1

q2 q3

r1

r2
r3

r0

t=0

t=1

q3=r0

piecewise polynomials

continuityG1 continuous in position and
tangent vector

must be parallel and have the same
direction, nothing about the length

tangents at the join parallel and equal in length

q0

q1

q2
q3

r1

r2
r3

r0

t=0

t=1

r1−r0=c q3−q2 for c0

c=t2−t1/t1−t0

t=2

piecewise polynomials

continuityC1 continuous in position and
tangent vector, stronger than

tangents at the join parallel and double in length

q0

q1

q2
q3

r1

r2
r3

r0

t=0

t=1

t=2 G1

piecewise polynomials

continuityC1

continuous in
position and
tangent vector,
stronger than

q0

q1

q2
q3

r1

r2
r3

r0

t=0

t=1

t=2

G1

continuityG1

q0

q1

q2
q3

r1

r2
r3

r0

t=0

t=1

t=2

continuous in
position and
tangent vector

continuityC0

q0

q1

q2 q3

r1

r2
r3

r0

t=0

t=1

continuous in
position

other curves

. Hermite Splines

. Catmull-Rom Splines

. Natural Cubic Splines

. B-Splines

. NURBS

other curves

. Hermite Splines

. Catmull-Rom Splines

. Natural Cubic Splines

. B-Splines

. NURBS

 Hermite Splines or Cubic splines

defined by:
. starting and end points
. and starting and end tangents

simpler to control than Bezier

 Hermite Splines

p t =2t3−3t21p0t3−2t2t m0t3−t2m1−2t33t2p1

p 0=p0,p 1=p1

∂p /∂t 0=m0,∂p /∂ t0=m1,

 Hermite Splines or Cubic splines

p t =2t3−3t21p0t3−2t2t m0t3−t2m1−2t33t2p1

why Hermit Splines
are cubic

interpolation?

 Hermite Splines or Cubic splines

p t =2t3−3t21p0t3−2t2t m0t3−t2m1−2t33t2p1

why Hermit Splines
are cubic

interpolation?
because the highest

exponent on the
blending function is t3

 Catmull-Rom Splines

. the spline passes through all of the control points

. continuous, there are no discontinuities in the
tangent direction and magnitude
C1

 B-Splines

. no interpolation

. the curve passes near the control points (use
 interactive placement, it is hard to know where the
 curve will go)
. continuous to compensate the loss of interpolationC2

http://www.digitalartform.com/archives/images/dripDemo.jpg

example effect + curve

	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94

