CG – T15 – Spatial Filters

L:CC, MI:ERSI

Miguel Tavares Coimbra

Suggested reading

- Gonzalez & Woods, "Digital Image Processing", 3rd Edition, Prentice Hall
 - Chapter 3 Intensity Transformations and Spatial Filtering

Various 2D images in the 3D pipeline

Fragments are 2D images

Rasterization

Textures are 2D images

Frame buffers are 2D images

What can I do with processing?

Blurring

Good for anti-aliasing!

Edge Detection

Depth of field effects

Pseudocolor

How can I do this?

Convolution

- Simple way to process an image.
- Mask defines the processing function.
- Corresponds to a multiplication in frequency domain.

Convolution

$$g(x) = \int_{-\infty}^{\infty} f(\tau)h(x-\tau)d\tau \qquad g = f * h$$

Convolution - Example

--f -g -f * g

Eric Weinstein's Math World

Convolution - Example

Properties of Convolution

Commutative

$$a*b=b*a$$

Associative

$$(a*b)*c = a*(b*c)$$

Cascade system

$$f \longrightarrow h_1 \longrightarrow h_2 \longrightarrow g$$

$$= f \longrightarrow h_1 * h_2 \longrightarrow g$$

$$= f \longrightarrow h_2 * h_1 \longrightarrow g$$

Example

- Each mask position has weight w.
- The result of the operation for each pixel is given by:

1	2	1
0	0	0
-1	-2	-1

2	2	2
4	4	4
4	5	6

Mask

Image

$$g(x,y) = \sum_{s=-at=-b}^{a} \sum_{s=-at=-b}^{b} w(s,t) f(x+s,y+t)$$
=1*2+2*2+1*2+...
=8+0-20
=-12

Definitions

Spatial filters

- Use a mask (kernel) over an image region.
- Work directly with pixels.
- As opposed to: Frequency filters.

Advantages

- Simple implementation: convolution with the kernel function.
- Different masks offer a large variety of functionalities.

Border Problem

What a computer sees

Border Problem

- Ignore
 - Output image will be smaller than original
- Pad with constant values
 - Can introduce substantial 1st order derivative values
- Pad with reflection
 - Can introduce substantial 2nd order derivative values

Smoothing

Mean Filtering

- We are degrading the energy of the high spatial frequencies of an image (low-pass filtering).
 - Makes the image 'smoother'.
 - Used in noise reduction.
- Can be implemented with spatial masks or in the frequency domain.

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

Gaussian Smoothing

Gaussian kernel

$$h(i,j) = \frac{1}{2\pi\sigma^2} e^{-\frac{1}{2}\left(\frac{i^2+j^2}{\sigma^2}\right)}$$

Filter size $N \propto \sigma$...can be very large (truncate, if necessary)

$$g(i,j) = \frac{1}{2\pi\sigma^2} \sum_{m=1}^{\infty} e^{-\frac{1}{2}\frac{m^2}{\sigma^2}} \sum_{n=1}^{\infty} e^{-\frac{1}{2}\frac{n^2}{\sigma^2}} f(i-m,j-n)$$
 Gaussia Filters!

Use two 1D Gaussian Filters!

Gaussian Smoothing

 A Gaussian kernel gives less weight to pixels further from the center of the window

This kernel is an approximation of a Gaussian function:

$$F[x, y]$$

$$h(u, v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2 + v^2}{\sigma^2}}$$

Median Filter

- Smoothing is averaging
 - (a) Blurs edges
 - (b) Sensitive to outliers

- Median filtering
 - Sort N^2-1 values around the pixel
 - Select middle value (median)

Non-linear (Cannot be implemented with convolution)

Low-pass Filtering

Original image

Low-pass image

FFT of original image

FFT of low-pass image

Low-pass filter

Lets the low frequencies pass and eliminates the high frequencies.

Generates image with overall shading, but not much detail

Edge Detection

The Sobel Operators

- Better approximations of the gradients exist
 - The Sobel operators below are commonly used

Laplacian of Gaussian (LoG)

$$h_{\sigma}(u,v)=rac{1}{2\pi\sigma^2}e^{-rac{u^2+v^2}{2\sigma^2}}$$
 Derivative of Gaussian (DoG) Gaussian

Laplacian of Gaussian

Mexican Hat (Sombrero)

• ∇^2 is the **Laplacian** operator: $\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$

Difference of Gaussians (DoG)

 Laplacian of Gaussian can be approximated by the difference between two different Gaussians

High-pass Filtering

Original image

High-pass image

FFT of original image

FFT of high-pass image

High-pass filter

Lets through the high frequencies (the detail), but eliminates the low frequencies (the overall shape). It acts like an edge enhancer.

Boosting High Frequencies

Original image

High boosted image

FFT of original image

FFT of high boosted image

High-boost filter

DoG Edge Detection

Unsharp Masking

Summary

- Digital Filters are a useful tool to process
 2D images
 - Rendered images, textures, frame buffers
- Convolution is a simple and powerful tool
- Various possible effects
 - Smoothing, edge detection, unsharp, field of view, motion blur, anti-aliasing