CG – T17 – Animation

L:CC, MI:ERSI

Miguel Tavares Coimbra (course designed by Verónica Orvalho, slides adapted from Steve Marschner)

Suggested reading

- Shirley et al., "Fundamentals of Computer Graphics", 3rd Edition, CRC Press
 - Chapter 17 Computer Animation

What is animation?

- Modeling = specifying shape
- Animation = specifying shape as a function of time
 - Just modeling done once per frame?
 - Need smooth, concerted movement
- Controlling shape = the technical problem
- Using shape controls = the artistic problem

Approaches to animation

Straight ahead

- Draw/animate one frame at a time
- Can lead to spontaneity, but is hard to get exactly what you want
- Pose-to-pose
 - Top-down process:
 - Plan shots using storyboards
 - Plan key poses first
 - Finally fill in the in-between frames

Pose-to-pose animation planning

First work our poses that are key to the story

• Next fill in animation in between

Keyframe animation

- Keyframing is the technique used for pose-to-pose animation
 - Head animator draws key poses—just enough to indicate what the motion is supposed to be
 - Assistants do "in-betweening" and draws the rest of the frames
- In computer animation substitute "user" and "animation software"
 - Interpolation is the principal operation

Keyframe animation

Controlling geometry conveniently

- Could animate by moving every control point at every keyframe
 - This would be labor intensive
 - It would also be hard to get smooth, consistent motion
- Better way: animate using smaller set of meaningful degrees of freedom (DOFs)
 - Modeling DOFs are inappropriate for animation
 - E.g. "move one square inch of left forearm"
 - Animation DOFs need to be higher level
 - E.g. "bend the elbow"

Character with DOFs

A visual description of the possible movements for the squirrel

Rigged character

- Surface is deformed by a set of bones
- Bones are in turn controlled by a smaller set of controls
- The controls are useful, intuitive DOFs for an animator to use

The artistic process of animation

- What are animators trying to do?
 - Important to understand in thinking about what tools they need
- Basic principles are universal across media
 - 2D hand-drawn animation
 - 2D computer animation
 - 3D computer animation
- (The following slides follow the examples from Michael Comet's very nice discussion on the page: "http://www.comet-cartoons.com/toons/3ddocs/charanim/)

Animation principles: timing

- Speed of an action is crucial to the impression it makes
 - examples with same keyframes, different times:

60 fr: looking around

30 fr:"no"

5 fr: just been hit

See annexed files: timing*.avi

Animation principles: ease in/out

- Real objects do not start and stop suddently
 - Animation parameters shouldn't either
 - A little goes a long way (just a few frames acceleration or deceleration for "snappy" motions)

ease in/out

See annexed files: ease*.avi

Animation principles: moving in arcs

- Real objects also don't move in straight lines
 - Generally curves are more graceful and realistic

See annexed files: arc*.avi

Animation principles: anticipation

 Most actions are preceded by some kind of "wind up"

See annexed files: anticip*.avi

Animation principles: exaggeration

- Animation is not exactly modeling reality
- Exaggeration is very often used for emphasis

See annexed files: exagg*.avi

Animation principles: squash & stretch

- Objects do not remain perfectly rigid as they move
- Adding stretch with motion and squash with impact:
 - models deformation of soft objects
 - indicates motion by simulating exaggerated "motion blur"

See annexed files: squash*.avi

Animation principles: follow through

- We've seen that objects don't start suddenly
- They also don't stop on a dime

See annexed files: follow*.avi

Animation principles: overlapping action

Usually many actions are happening at once

See annexed files: sec*.avi

Animation principles: staging

- Want to produce cler, good-looking 2D images
 - Need good camera angles, set design, and character positions

Computer-generated motion

- Interesting aside: many principles of character animation follow indirectly from physics
- Anticipation, followthrough, and many other effects can be produced by simply minimizing physical energy
- Seminal paper:
 "Spacetime Constraints"
 by Witkin and Kass in
 SIGGRAPH 1988

Controlling shape for animation

- Start with modeling DOFs (control points)
- Deformations control those DOFs at a higher level
 - Example: move first joint of second finger on left hand
- Animation controls control those DOFs at a higher level
 - Example: open/close left hand
- Both cases can be handled by the same kinds of deformers

Example: Articulation in robotics

- a. rectangular or cartesian
- b. cylindrical or post-type
- c. spherical or polar
- d. joint-arm or articulated
- e. SCARA (selective compliance assembly robot arm)

Motion capture

 A method for creating complex motion quickly: measure it from the real world

Summary

- Keyframe animation
 - User creates key poses; computer interpolates the rest
- Controlling geometry
 - Use a small set of degrees of freedom (DOFs)
- Animation principles for more interesting animations
- Motion capture as a way to model complex animations