
MAPI – Computer Vision

Multiple View Geometry
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2- and 3- view geometry
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Geometry of Multiple Views
2- and 3- view geometry

• Epipolar Geometry
– The epipolar geometry is the intrinsic projective geometry 

between two views. 
– It is independent of scene structure, and only depends on the 

cameras' internal parameters and relative pose. 
– Consider the images p and p’ of a point P observed by two 

cameras with optical centers O and O’. 



Geometry of Multiple Views
2- and 3- view geometry

• Epipolar Geometry
• These five points all belong to the epipolar plane defined by the two 

intersecting rays OP and O’P. 
• In particular, the point p’ lies on the line l’ where this plane and the retina Π’

of the second camera intersect.
• The line l’ is the epipolar line associated with the point p’, and it passes 

through the point e’ where the baseline joining the optical centers O and O’
intersects Π.

• Likewise, the point p lies on the epipolar line l associated with the point p, 
and this line passes through the intersection e of the baseline with the plane 
Π.



Geometry of Multiple Views
2- and 3- view geometry

• Epipolar Geometry
• The points e and e’ are called the epipoles of the two 

cameras. 
• The epipole e’ is the (virtual) image of the optical center O 

of the first camera in the image observed by the second 
camera, and vice versa. 

• if p and p’ are images of the same point, then p’ must lie on 
the epipolar line associated with p. 

Base Line



Geometry of Multiple Views
2- and 3- view geometry

• 2- Camera Geometry
– Given the projection of P in one image, its projection in the other 

image is constrained to be on a line, epipolar line associated 
with p

– This epipolar constraint plays a fundamental role in stereo 
vision and motion analysis



Geometry of Multiple Views
2- and 3- view geometry

• Epipoles e and e’ are at the intersection 
of the epipoles lines



Geometry of Multiple Views
2- and 3- view geometry

• Special case: frontoparallel cameras. 
– Epipoles are at infinity



Geometry of Multiple Views
2- and 3- view geometry

• Fundamental matrix F
– The fundamental matrix is the algebraic 

representation of epipolar geometry. 
– Geometric derivation 

• The mapping from a point in one image to a corresponding 
epipolar line in the other image may be decomposed into two 
steps. 

• first step, the point x is mapped to some point x' in the other 
image lying on the epipolar line l'. This point x' is a potential 
match for the point x. 

• second step, the epipolar line l' is obtained as the line 
joining x' to the epipole e'. 



Geometry of Multiple Views
2- and 3- view geometry

• Fundamental matrix F
– Geometric derivation 
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Geometry of Multiple Views
2- and 3- view geometry

• Fundamental matrix F
– Correspondence condition: map x→l’

• The fundamental matrix satisfies the condition that for any 
pair of corresponding points x ↔ x' in the two images 
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Geometry of Multiple Views
2- and 3- view geometry

• Fundamental matrix F
– Properties

• Transpose: If F is the fundamental matrix of the pair of cameras (P, P'), 
then FT is the fundamental matrix of the pair in the opposite order: (P', P). 

• Epipolar lines: For any point x in the first image, the corresponding epipolar 
line is l' = Fx. Similarly, l = FTx' represents the epipolar line corresponding 
to x' in the second image.

• The epipole: for any point x (other than e) the epipolar line l' = Fx contains 
the epipole e'. Thus e' satisfies e’T(Fx) = (e’TF)x = 0 for all x. It follows that 
e’TF = 0, i.e. e' is the left null-vector of F. Similarly Fe=0, i.e. e is the right 
null-vector of F. 

• F has seven degrees of freedom: a 3 x 3 homogeneous matrix has eight 
independent ratios; however, F also satisfies the constraint detF=0 which 
removes one degree of freedom. 

• F is a correlation, a projective map taking a point to a line. In this case a 
point in the first image x defines a line in the second l' = Fx, which is the 
epipolar line of x. If l and l' are corresponding epipolar lines then any 
point x on l is mapped to the same line l'. This means there is no inverse 
mapping



Geometry of Multiple Views
2- and 3- view geometry

• Fundamental matrix F
– Epipolar line equation:

– x belongs to l’
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Geometry of Multiple Views
2- and 3- view geometry

• Fundamental matrix F
– The epipolar line homography 

• The set of epipolar lines in each of the images forms a pencil of 
lines passing through the epipole. 

• Such a pencil of lines may be considered as a 1-dimensional 
projective space. 

• It is clear from figure that corresponding epipolar lines are 
perspectively related, so that there is a homography between the 
pencil of epipolar lines centred at e in the first view, and the 
pencil centred at e' in the second. A homography between two 
such 1-dimensional projective spaces has 3 degrees of freedom. 



Geometry of Multiple Views
2- and 3- view geometry

• Fundamental matrix F
– The epipolar line homography 

• The 7 degrees of freedom of the fundamental matrix can thus 
be counted as follows: 

– 2 for e, 2 for e', 
– 3 for the epipolar line homography which maps a line through 

e to a line through e'. 



Geometry of Multiple Views
2- and 3- view geometry

• Fundamental matrix F

[ ]

0''''''

0
1

1''

333231232221131211

333231

232221

131211

=++++++++

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

fyfxffyyfyxfyfxyfxxfx

y
x

fff
fff
fff

yx

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

=
=

1''''''

1''''''
0Af

0f)1,,,',',',',','(

111111111111

nnnnnnnnnnnn yxyyyxyxyxxx

yxyyyxyxyxxx

yxyyyxyxyxxx

MMMMMMMMM



Geometry of Multiple Views
2- and 3- view geometry

• Fundamental matrix F
– For a solution to exist, matrix A must have rank at most 8, and if 

the rank is exactly 8, then the solution is unique, and can be 
found by linear methods

– If the data is not exact, because of noise in the point coordinates, 
then the rank of A may be greater than 8 (in fact equal to 9, 
since A has 9 columns). In this case, one finds a least-squares 
solution. 

– The least-squares solution for f is the singular vector 
corresponding to the smallest singular value of A. 

– The solution vector f found in this way minimizes ||Af || subject to 
the condition ||f || = 1. 

– The algorithm just described is the essence of a method called 
the 8-point algorithm for computation of the fundamental matrix. 



Geometry of Multiple Views
2- and 3- view geometry

• Fundamental matrix F
– The singularity constraint 

• An important property of the fundamental matrix is that it is 
singular, in fact of rank 2. 

• Furthermore, the left and right null-spaces of F are generated 
by the vectors representing (in homogeneous coordinates) 
the two epipoles in the two images.

• If the fundamental matrix is not 
singular then computed epipolar 
lines are not coincident, as is 
demonstrated by figure 



Geometry of Multiple Views
2- and 3- view geometry

• Fundamental matrix F
– The singularity constraint 

• The matrix F found by solving the set of linear equations will not in 
general have rank 2, and we should take steps to enforce this 
constraint. 

• The most convenient way to do this is to correct the matrix F 
found by the SVD solution from A. 

• Matrix F is replaced by the matrix F' that minimizes the Frobenius 
norm ||F — F'|| subject to the condition detF'=0 

SVD – single value decomposition
solution of over-determined systems of
equations



Geometry of Multiple Views
2- and 3- view geometry

• Fundamental matrix F
– The 8-point algorithm for computation of the 

fundamental matrix may be formulated as consisting 
of two steps, as follows. 

• Linear solution. A solution F is obtained from the vector f 
corresponding to the smallest singular value of A, 

• Constraint enforcement. Replace F by F', the closest 
singular matrix to F under a Frobenius norm. This correction 
is done using the SVD. 



Geometry of Multiple Views
2- and 3- view geometry

• Fundamental matrix F
– The 8-point algorithm assume that we know the 

correspondences between the images
– In general, we do not know the correspondences and 

we must find them automatically
• Solution: 

– RANSAC = RANdom SAmple Consensus



Geometry of Multiple Views
2- and 3- view geometry

• Fundamental matrix F
– Automatic computation of F

• RANSAC
– Do k times:

» Draw set with minimum number of correspondences
» Fit F to the set
» Count the number d of correspondences that are closer 

than t to the fitted epipolar lines
» If d > dmin, recompute fit error using all the 

correspondences
– Return best fit found



Geometry of Multiple Views
2- and 3- view geometry

• Structure Computation 
– Back-projecting rays

• From the measured image points
• Triangulation



Stereo Vision

• Stereo Vision 
– Stereo vision is the process of recovering the three-dimensional 

location of points in the scene from their projections in images. 
More precisely, if we have two images Il and Ir (left and right from 
the left and right eyes), given a pixel pl in the left image and the 
corresponding pixel pr in the right image, then the coordinates 
(X,Y,Z) of the corresponding point in space is computed.



Stereo Vision

• Stereo Vision 
– Geometrically, given pl, we know that the point P lies 

on the line Ll joining pl and the left optical center Cl
(this line is the viewing ray), although we don’t know 
the distance along this line.

– Similarily, we know that P lies along a line Lr joining pr
and P. 

– knowing exactly the parameters of the cameras 
(intrinsic and extrinsic), we can explicitly compute the 
parameters of Ll and Lr. Therefore, we can compute 
the intersection of the  two lines, which is the point P.

– This procedure is called triangulation.



Stereo Vision

• Stereo Vision 
– Correspondence: 

• Given a point pl in one image, find the corresponding point in 
the other image.

– Reconstruction: 
• Given a correspondence (pl,pr), compute the 3-D coordinates 

of the corresponding point in space, P.



Stereo Vision
• Correspondence

– Given pl, finding the 
corresponding point pr
involves searching the right 
image for the location pr such 
that the right image around pr
“looks like” the left image 
around pl. 

– Take a small window W 
around pl and compare it with 
the right image at all possible 
locations. 

– The position pr that gives the 
best match is reported.

– The fundamental operation, 
therefore, is to compare the 
pixels in a window W(pl) with 
the pixels in a window W(pr). 

• Sum of Absolute Differences
• Sum of Squared Differences
• Normalized Correlation



Stereo Vision

• Matching Functions



Stereo Vision
• Correspondence

– Rectification
• Searching along epipolar lines at 

arbitrary orientation is intuitively 
expensive. 

• Always search along the rows of the 
right image.

– Given the epipolar geometry of the 
stereo pair, there exists in general a 
transformation that maps the images 
into a pair of images with the epipolar 
lines parallel to the rows of the 
image. This transformation is called 
rectification. 

• Images are almost always rectified 
before searching for correspondences 
in order to simplify the search. 

• The exception is when the epipole is 
inside one of the images. In that case, 
rectification is not possible.



Stereo Vision
• Correspondence

– Rectification
• Given a plane P in 

space, there exists two 
homographies Hl and Hr
that map each image 
plane onto P. That is, if 
pl is a point in the left 
image, then the 
corresponding point in P 
is Hp (in homogeneous 
coordinates). 

• If we map both images to 
a common plane P such 
that P is parallel to the 
line ClCr, then the pair of 
virtual (rectified) images 
is such that the epipolar 
lines are parallel.



Stereo Vision

• Correspondence
– Rectification

• The algorithm for rectification 
is then:

– Select a plane P parallel to 
CrCl

– Define the left and right image 
coordinate systems on P

– Construct the rectification 
matrices Hl and Hr from P and 
the virtual image’s coordinate 
systems.



Stereo Vision

• Disparity
– Assuming that images are rectified, given two 

corresponding points pl and pr, 
– the difference of their coordinates along the epipolar 

line xl-xr is called the disparity d. 
– The disparity is the quantity that is directly measured 

from the correspondence.
– The corresponding 3-D point P can be computed from 

pl and d, assuming that the camera parameters are 
known.



Stereo Vision

• Disparity



Stereo Vision

• Recover the 3-D coordinates
– Two cameras with parallel image planes

• Consider a point P of coordinates X,Y, Z. 
• P is projected to pl and pr in the two images. 
• The focal length of the cameras is denoted by f, and the 

distance between the optical centers (the baseline) is 
denoted by B.

• Looking at the diagram, we see that the triangles (Cr,Cl,M) 
and (pr,pl,P) are similar triangles. 

• Therefore, the ratios of their height to base are equal
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Stereo Vision

• Recover the 3-D coordinates
– Two cameras with parallel image planes

• This relation is the fundamental relation of stereo. 

• It basically states that the depth is inversely proportional to 
the disparity.

• Once we know Z, the other two coordinates are derived using 
the standard perspective equations:

f
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Stereo Vision

• Recover the 3-D coordinates
– Two cameras with parallel image planes

• Commercial solutions 
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Stereo Vision

• Recover the 3-D coordinates
– Two cameras with parallel image planes

• Commercial solutions 



Stereo Vision

• Recover the 3-D coordinates
– Two cameras with parallel image planes

• How accurately can those coordinates be computed?
– Consider a matching pair of disparity d corresponding to a 

depth Z. If we make an error of one pixel (d+1 instead of d), the 
depth becomes Z’. 

– We want to evaluate DZ, the error in depth due to the error in 
disparity. 

– Taking the derivative of Z as a function of d, we get:

Bf
Z

d
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d
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Stereo Vision

• Recover the 3-D coordinates
– Two cameras with parallel image planes

• The final relation illustrates the fundamental relation between 
baseline, focal length and accuracy of stereo reconstruction. 

• For an error of 1 pixel on disparity, we get an error in Z of:

Bf
Z 2



Stereo Vision

• Recover the 3-D coordinates
– Two cameras with parallel image planes

• Depth: 
– The resolution of the stereo reconstruction decreases 

quadratically with depth. 
– This implies severe limitation on the applicability of stereo. 
– If we assume sub-pixel disparity interpolation with a resolution 

Δd, the depth resolution becomes: 

but it still remains quadratic in depth.

d
Bf
Z

Δ
2



Stereo Vision
• Recover the 3-D coordinates

– Two cameras with parallel image planes
• Baseline: 

– The resolution improves as the baseline increases. We would 
be tempted to always use a baseline as large as possible. 

– However, the matching becomes increasingly difficult as the 
baseline increases (for a given depth) because of the 
increasing amount of distortion between the left and the right 
images. 

• Focal length: 
– The resolution improves with focal length. 
– Intuitively, this is due to the fact that, for a given image size, the 

density of pixels in the image plane increases as f increases. 
Therefore, the disparity resolution is higher. 

Bf
Z 2



Stereo Vision
• Recover the 3-D coordinates

– Two cameras with parallel 
image planes

• The previous discussion 
assumes that the viewing rays 
from the left and right cameras 
intersect exactly. 

• That is not usually the case 
because of small errors in 
calibration. 

• The two viewing rays pass close 
to each other but do not exactly 
intersect. 

• The point P is reconstructed as 
the point that is the closest to 
both lines.



Stereo Vision

• Recover the 3-D coordinates
– Two cameras with parallel image planes

• Sub-pixel disparity
– The disparity is computed by moving a window one pixel at a 

time. 
– As a result, the disparity is known only up to one pixel. 
– This limitation on the resolution of the disparity translates into a 

severe limitation on the accuracy of the recovered 3-D 
coordinates. 

– One effective way to get this problem is to recover the disparity 
at a finer resolution by interpolating between the pixel disparities 
using quadratic interpolation.



Stereo Vision

• Recover the 3-D coordinates
– Two cameras with parallel image planes

• Sub-pixel disparity

• Suppose that the best disparity at a pixel is 
obtained at do with a matching value (for 
example SSD) of S(do). 

• We can obtain a second order 
approximation of the (unknown) function 
S(d ) by approximating S by a parabola. 

• At the position dopt corresponding to the 
bottom of the parabola, we have 
S(dopt)<=S(do). Therefore, dopt is a better 
estimate of the disparity than do.

• The question remains as to how to find this 
approximating parabola. 



Stereo Vision

• Recover the 3-D coordinates
– Two cameras with parallel image planes

• Sub-pixel disparity

• Let us first translate all the disparity values 
so that do=0. 

• The equation of a general parabola is: 
– S(d ) =ad2+bd+c. 
– To recover the 3 parameters of the parabola 

we need 3 equations which we obtain by 
writing that the parabola passes through the 
point of disparity 0, -1, and +1:

– S(0) = c S(1) =a+b+c S(-1) =a-b+c
– Solving this, we obtain: c = S(0) a = ( S(1) + 

S(-1) - 2 S(0))/2 b = ( S(1) - S(-1))/2
– The bottom of the parabola is obtained at 

dopt such that S’(d ) = 2ad+b = 0. Therefore, 
the optimal disparity is obtained



Stereo Vision

• Recover the 3-D coordinates
– Two cameras with parallel image planes

• Matching Confidence
– Stereo matching assumes that there is enough information in the 

images to discriminate between different positions of the 
matching window. 

– That is not the case in regions of the image in which the intensity 
is nearly constant. In those regions, there is not a single 
minimum of the matching function and the disparity cannot be 
computed.

• Detecting that the disparity estimate is unreliable
– This can be done by compute the gradient of the image in the x 

direction, Ix and computing the local average of its squared 
magnitude: ΣIx2. 

– This quantity can then be used as a measure of reliability of 
matching (confidence measure.)



Stereo Vision

• Recover the 3-D coordinates
– Two cameras with parallel image planes

• Lighting Issues
– A problem is that the lighting conditions maybe substantially 

different between the left and right image. 
– Because, for example, of different exposures or different settings 

of the camera. 
– Because ψ measures directly the difference in pixel values, its 

value will be corrupted.



Stereo Vision

• Recover the 3-D coordinates
– Two cameras with parallel image planes

• Lighting Issues
– The normalized correlation reduces this problem
– Laplacian of Gaussian (LOG)

» smoothly varying parts of the image do not carry much 
information for matching. The useful information is contained 
in higher-frequency variations of intensity.



Stereo Vision
• Recover the 3-D coordinates

– Two cameras with parallel image planes
• Laplacian of Gaussian (LOG)

» smoothly varying parts of the image do not carry much information 
for matching. The useful information is contained in higher-
frequency variations of intensity.

– So we want to eliminate the slowly-varying parts of the image (low-
frequency), and this can be done by using a second derivatives. 

– Also, we want to eliminate the high-frequency components which 
correspond to noise in the image, which suggests blurring with a
Gaussian filter.

– The combination of the two suggests the use of the Laplacian of 
Gaussian (LOG) previously defined in the context of edge detection. 

– This filter is technically a band-pass filter (removes both high and low 
frequencies.) 

– In practice, the images are first convoluted with the LOG filter



Stereo Vision

• Recover the 3-D coordinates
– Two cameras with parallel image planes

• Laplacian of Gaussian (LOG)
» smoothly varying parts of the image do not carry much 

information for matching. The useful information is contained 
in higher-frequency variations of intensity.



Stereo Vision

• Recover the 3-D coordinates
– Two cameras with parallel image planes

• Effect of Window Size
– Window size has qualitatively the same effect as smoothing. 
– Localization is better with smaller windows. In particular, the 

disparity image is corrupted less near occluding edges because 
of better localized match. 

– Matching is better with larger windows because more pixels are 
taking into account, and there is therefore better discrimination 
between window positions.

– Localization degrades as the window size increases, for the 
same reason. 

– For large values of w, the minimum is flatter (lower curvature), 
leading to lower confidence in the matching as defined before.



Stereo Vision
• Recover the 3-D coordinates

– Two cameras with parallel image planes
• Ambiguity

– In many cases, several positions along the epipolar line can 
match the window around the left pixel. 

– In that case, there is an ambiguity as to which point leads to the 
correct 3-D reconstruction. If the ambiguous matches are far 
apart, they will correspond to very different points in space, thus 
leading to large errors.

– In practice, it is nearly impossible to eliminate all such 
ambiguities, especially in environments with lots of regular 
structures. The solution is generally to use more than two 
cameras in stereo.



Stereo Vision

• Recover the 3-D coordinates
– >2 cameras - “multibaseline” approach

• Suppose that the three cameras are aligned. 
• A point P corresponds to three points in the images, aligned 

along the horizontal epipolar line. 



Stereo Vision

• Recover the 3-D coordinates
– >2 cameras - “multibaseline” approach

• Suppose that the three cameras are aligned. 
• A point P corresponds to three points in the images, aligned 

along the horizontal epipolar line. 
• The disparities of those points d12 and d13 between the first 

image and images 2 and 3 are in general different because the 
baselines are different:
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Stereo Vision

• Recover the 3-D coordinates
– >2 cameras - “multibaseline” approach

• if we plot the matching curves (S12(d’)) not as a function of the 
disparity but at a function of d’ = d/B, assuming that the 
matches are correct, all the curves should have the same 
minimum at d’ = 1/Z.

• Instead of using S12 and S13 separately, we can just combine 
them into a single matching function: S(d’) = S12 + S13

• and find the minimum of S(d’). 



Stereo Vision

• Recover the 3-D coordinates
– >2 cameras - “multibaseline” approach
– Using a multibaseline approach combines the 

advantages of both short and long baseline:
• The short baseline will make the matching easier but leads to 

poorer localization in space. The longer baseline leads to 
higher precision localization but more difficult matching. 
Furthermore, ambiguous matches would not generally appear 
at multiple baselines, thus, by combining the matching function 
into a single function, we get a sharper, unique peak of the 
matching function.


