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Outline

« Features and feature extraction (revision)

« Statistical pattern recognition

— Bayesian Decision Theory
MAP
MLE Gaussian estimation
Plug-in classifier

— Dimensionality

— Feature space selection

— Non-Bayesian classifiers

Distance-based classifiers
- KNN

Decision boundary-based classifiers
— Decision trees
— ANN
— SVMs

— Unsupervised learning and clustering
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Computer vision system

* Image recognition system:

— Feature extraction: captures meaningful information from the image (for the
specific task at hand), reducing dimensionality.

— Pattern_recognition: Does the actual job of classifying or describing
observations, relying on the extracted features.

« System diagram:
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Features and feature extraction (revision)

« Observers capture the meaning of an image discarding all unnecessary information. By
choosing adequate features we do the same!

* By selecting some specific feature we introduce prior knowledge!

« Different image content is described by different features:
— Shape, colour, texture...

« There are a wide range of different feature types
— Low/middle/high level
— Global/local

« The choice of feature selection is based on both prior knowledge we may have and the
availability of certain features!

* Feature can be concatenated for decision based on joint information.
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Features and feature extraction (revision)

« Classic features:
— Global colour and edge histograms
— Texture through co-occurrence matrices and fractal analysis

« MPEG-7 features:

— Dominant colour — clusters colours into a small number of colours in the image (salient colours)
— Scalable colour — HSI histogram (H with 16 levels, S with 4 levels and | with 4 levels)
— Colour Layout — divides image into block and obtains average colours (sketch like feature) J I”

[ —
0 25

&

— Colour structure — histogram of local colour structures

— Homogeneous structure — filter response that indicates structure at different scales/orientations
— Local Edge histogram - Image divided into 4x4 sub-regions, 5 bin edge histogram for each region

— Freeman Chain Code — represents the border of an object by a code of relative steps.

— Region-Based Shape — uses an ART basis functions response to describe shape along various
angular and radial directions.

— Contour-Based Descriptor - Finds curvature zero crossing points of the shape’s contour (key points).
The position of key points are expressed relative to the length of the contour curve

MIA P

shape || texture
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Features and feature extraction (revision)

* |mage subdivision
— Global feature rarely have the descriptive power to capture all information in an
image
— This leaves global features usable only for some limited image recognition tasks and
motivates localized image analysis
* An image often requires a part based analysis:
— Context is global, but object are defined locally.
— Most image content is described at a local level.
— By dividing an image into parts we simplify recognition.
— Separating objects from context makes recognition more robust
 There are several way an image can be subdivided for analysis
— Object segmentation (when possible, not na easy taks in “normal images™)
— Grid subdivision (easy but leads to sampling problems)
— Exhaustive search (slow)

MIA P

Computer Vision - 8 - Pattern recognition concepts 7




Computer vision system

* Image recognition system:

— Feature extraction: captures meaningful information from the image (for the
specific task at hand), reducing dimensionality.

— Pattern_recognition: Does the actual job of classifying or describing
observations, relying on the extracted features.

« System diagram:

------------------------------------------------------------------------------------------------------------------------------------------------------
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Bayesian Decision Theory

» Bayesian Decision Theory is a statistical approach that
quantifies the tradeoffs between various decisions using
probabilities and costs that accompany such decisions.

» Fish sorting example: define w, the type of fish we observe
(state of nature), as a random variable where

» w = wy for sea bass

» w = wo for salmon

» P(wy) is the a priori probability that the next fish is a sea bass
» P(wsy) is the a priori probability that the next fish is a salmon

; . ea bas . .
Ty I Figure: Picture taken from a
camera.

lesgih
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Bayesian Decision Theory

* Prior Probabilities:

» Prior probabilities reflect our knowledge of how likely each
type of fish will appear before we actually see it.
» How can we choose P(wi) and P(w3)?
» Set P(wy) = P(ws) if they are equiprobable (uniform priors).
» May use different values depending on the fishing area, time of
the year, etc.

» Assume there are no other types of fish
P(wy) + P(wy) =1

(exclusivity and exhaustivity)

» How can we make a decision with only the prior information?
_ wy it P(wy) > P(w:
Decide {u1 ! (w1) (w2)

wo  otherwise

» What is the probability of error for this decision?

P(error) = min{ P(wy), P(wsy)}
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Bayesian Decision Theory

Class-conditional Probabilities:

» Let's try to improve the decision using the lightness
measurement = (€ R).

» Let x be a continuous random variable.

» Define p(x|w;) as the class-conditional probability density
(probability of = given that the state of nature is w; for
j=1,2).

» p(x|wy) and p(x|wsz) describe the difference in lightness
between populations of sea bass and salmon.
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Bayesian Decision Theory

o Posterior Probabilities:

» Suppose we know P(w;) and P(x|w;) for j = 1,2, and
measure the lightness of a fish as the value .

» Define P(w;|z) as the a posteriori probability (probability of
the state of nature being w; given the measurement of feature
value ).

» We can use the Bayes formula to convert the prior probability
to the posterior probability

, Plalw:)Plw. . prior x likelihood
MAP estlmate> P(w;|z) = “';L) (w;) 5 posterior = o e _

where P(z) = 2?21 P(z|wj)P(wj)
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Bayesian Decision Theory

* Making a Decision:

» P(a|w;j) is called the likelihood and P(xz) is called the
evidence.

» How can we make a decision after observing the value of 7
, wy if  P(wi|xz) > Plws|x
Decide ( | |2) > Pwalz)
wo otherwise
» Rewriting the rule gives
. . Plwy|z) . P(wy)
Decide {m T Plwse) = Plus )

wo otherwise

Plwy)=5 Plow)=.5 Plw,j=7 Pluy)=.3

Figure: Optimum thresholds for different priors.
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Bayesian Decision Theory

* Probability of Error:

» What is the probability of error for this decision?

P(wy|z) if we decide w:

P(ﬁ"?"f’()'?"!lf) — (?J- 1 ‘ 1 ) | we eCf e w9
P(us|x) if we decide 1w,

» What is the average probability of error?

oo oo pixkw )Pl
plerror) = Plerror,z)dz = P(error|z)P(x)dx L o
— 0o ) wy RN
T 4
» Bayes decision rule minimizes this error because / N
/ reducible N
/ : error
P(error|z) = min{ P(w;|x), P(wa|x)} / o .
N 4 4 -

R, xp X K R,
[Pl Pl dix [ptleo Py dx

R, R,

Figure: Components of the probability of error for equal priors and the
non-optimal decision point 2*. The optimal point 2 minimizes the total
shaded area and gives the Bayes error rate.
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Bayesian Decision Theory

How can we generalize to
» more than one feature?
» replace the scalar = by the feature vector x
» more than two states of nature?
» just a difference in notation
» allowing actions other than just decisions?
» allow the possibility of rejection
» different risks in the decision?
» define how costly each action is
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Bayesian Decision Theory

« Minimum-error-rate Classification:

>

Let {wy,...,w.} be the finite set of ¢ states of nature (classes,
categories).

Let x be the d-component vector-valued random variable
called the feature vector.

If all errors are equally costly, the minimum-error decision rule
is defined as

Decide w; if P(w;|z) > P(w,;|z)v) #1

The resulting error is called the Bayes error and is the best
performance that can be achieved.
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Bayesian Decision Theory

» Bayesian decision theory gives the optimal decision rule under
the assumption that the "true” values of the probabilities are

known.

» How can we estimate (learn) the unknown

p(x|w;), 7 =1,....¢c7

» Parametric models: assume that the form of the density

functions are known

» Density models (e.g., Gaussian)
Mixture models (e.g., mixture of Gaussians)

>
» Hidden Markov Models
» Bayesian Belief Networks

» Non-parametric models: no assumption about the form

» Histogram-based estimation

» Parzen window estimation

» Nearest neighbour estimation

MIA P
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Bayesian Decision Theory

e The Gaussian Density:

» Gaussian can be considered as a model where the feature
vectors for a given class are continuous-valued, randomly
corrupted versions of a single typical or prototype vector.

» Some properties of the Gaussian:

» Analytically tractable

» Completely specified by the 1st and 2nd moments

» Has the maximum entropy of all distributions with a given
mean and variance

» Many processes are asymptotically Gaussian (Central Limit
Theorem)

» Uncorrelatedness implies independence

» Forz € R:

plx)
J

where

p-2o p-o 7 p+o p+lo
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Bayesian Decision Theory

 Multivariate Gaussian:

» For x € R

i 1 1 L
p(x) = N(p, X) = (7)1 exp [Q(X — )T (x = p)
where N
n=FE(x)= fo(x)dx
£ = Ef(x - p)(x — )" R

Figure: Samples drawn from a two-dimensional Gaussian lie in a cloud
centered on the mean p. The loci of points of constant density are the
ellipses for which (x — ,u)TE*l(x — J4) is constant, where the
eigenvectors of 3. determine the direction and the corresponding
eigenvalues determine the length of the principal axes. The quantity
r? = (x — ;)T S (x — ) is called the squared Mahalanobis distance
from x to p.
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Bayesian Decision Theory

« Bayes Linear Classifier:

> Let us assume that the class-conditional densities are Gaussian
and then explore the resulting form for the posterior
probabilities.

> assume that all classes share the same covariance matrix.
Thus the density for class Cyis given by

1 1 1 _
p(X|Ck) = (QW)D/Q |E|1f/2 exp {_E(X - IJ’R)TE l(X - IJ’.’\,)}

» assuming only 2 classes the decision boundary is linear: check
this!

The decision surface is planar when the covariance matrices are the
same and quadratic when they are not.

235
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Bayesian Decision Theory

* Plug-in classifier:

Algorithm 22.2: A plug-is “la r cat

conditional densities are known to be norma

Finding Templates Using Classifiers Chap. 22

————

sed 10 classify objects into classes il the clas |

I N classes. and the kth class contains N; examples. of which the ithis |
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Bayesian Decision Theory

>

Gaussian Density Estimation:

Bayesian Decision Theory shows us how to design an optimal
classifier if we know the prior probabilities P(w;) and the
class-conditional densities p(x|w;).

Unfortunately, we rarely have complete knowledge of the
probabilistic structure.

However, we can often find design samples or training data
that include particular representatives of the patterns we want

to classify.

The maximum likelihood estimates of a Gaussian are |:> For more details see:
=4+ " x;and ¥ = 1 Po(xi— ) (x — )t http://www.autonlab.org/tutorials/mle13.pdf

n n

Rt sample fram H{10.2% Randam sampe frem 05 K10.0.4% + 0.5 K12 5%
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Bayesian Decision Theory

» Naive Bayes classifier:

— Given a large number of features it is very difficult to estimate P(F|C) due
to all the correlations between features (sorry about the variable name

change).
— It is easier if we assume independent features (uncorrelated Gaussian
features).
C —Class
F - Features

P(C.F,.F,,..F,)= P(C)] | P(F;1C)

We only specify (parameters):
P(C) prior over class labels
P(F,1C)  how each feature depends on the class
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Bayesian Decision Theory

» Naive Bayes classifier:
— Assuming uncorrelated features makes all the math much simpler:

— Naive assumption:
pLF|C, Fj) = p(F||C)
— Allowing for:

a

B(C Ry, Fo) =p(€) p(R|C) p(B|C) plFC) --- = p(C) [] p(EI|C).

i=1

e PCA can be use to de-correlate the features!
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Bayesian Decision Theory

Classification error:

» To apply these results to multiple classes, separate the
training samples to ¢ subsets Dy, .. ., D.., with the samples in

D; belonging to class w;, and then estimate each density
p(x|w;, D;) separately.
» Different sources of error:
» Bayes error: due to overlapping class-conditional densities
(related to features used)
» Model error: due to incorrect model

» Estimation error: due to estimation from a finite sample (can
be reduced by increasing the amount of training data)

Computer Vision - 8 - Pattern recognition concepts
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Dimensionality

* Curse of Dimensionality:

» In practical multicategory applications, it is not unusual to
encounter problems involving tens or hundreds of features.

» Intuitively, it may seem that each feature is useful for at least
some of the discriminations.

» There are two issues that we must be careful about:
» How is the classification accuracy affected by the
dimensionality (relative to the amount of training data)?
» How is the computational complexity of the classifier affected
by the dimensionality?
» |n general, if the performance obtained with a given set of
features is inadequate, it is natural to consider adding new

features.

» Unfortunately, it has frequently been observed in practice
that, beyond a certain point, adding new features leads to
worse rather than better performance.

» This is called the curse of dimensionality.

Computer Vision - 8 - Pattern recognition concepts
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Dimensionality

* How to avoid problems with dimensionality:

» All of the commonly used classifiers can suffer from the curse
of dimensionality.

» While an exact relationship between the probability of error,
the number of training samples, the number of features, and
the number of parameters is very difficult to establish, some
guidelines have been suggested.

» |t is generally accepted that using at least ten times as many
training samples per class as the number of features
(n/d > 10) is a good practice.

» The more complex the classifier, the larger should the ratio of
sample size to dimensionality be.

« The complexity of the classifier increases as features are more heavily
correlated, far from Gaussian and overlapped.

« The rule of n/d>10 is only really valid for independent features
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Dimensionality

« Reducing dimensionality:

Dimensionality can be reduced by
» redesigning the features

» selecting an appropriate subset among the existing features
(feature selection)
» transforming to different feature spaces

» Principal Components Analysis (PCA) seeks a projection that
best represents the data in a leastsquares sense.

» Linear Discriminant Analysis (LDA) seeks a projection that
best separates the data in a least squares sense.
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PCA — Principal Component analysis

* Finds the most accurate data representation and enable data representation in a lower
dimensional space without much information loss.

— Assumes that variance is equal to information
— Assumes Gaussian variables
— Uses L2 norm

* In the resulting basis axis are aligned
with major co-variance directions and axis

which do not represent large variances may 0
be removed without loss of information. =
- |
|
|
m =
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PCA — Principal Component analysis

 PCA — Principal Component analysis

— Useful for better Gaussian modeling of the data ( eliminates the need for a full
covariance matrix)

A l..l
- >
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* Principle component analysis (PCA)
PCA algorithm:

Computation: | SvDforPCA

Obtain input data vectors and compute mean input vector

Subtract mean input vector to all data vectors

Compute input data covariance matrix

Compute eigenvectors and eigenvalues from the covariance matrix

Choosing the components and forming the feature vector
= removing components which correspond to the small eigen vectors

* SVD can be used to efficiently compute the image basis
PP =(UZVYUEVY =UZVTV U =UT EZU =UZ U™
(PPYU=UZ?

(PPyv=vi

+ U are the eigen vectors (image basis)

* Most important thing to notice: Distance in the eigen-space
is an approximation to the correlation in the original space

=

i

e —c
L J
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LDA - Linear Discriminant Analysis

« Also know as Fisher's linear discriminant analysis:

— Projection that best separates
the data in a least-squares n_ "
sense.

— Projection of n-dimensional
data onto a line.
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Fisher’'s linear discriminants

A simple linear discriminant function is a projection of the data down to 1-D.

— So choose the projection that gives the best separation of the classes.
What do we mean by “best separation”?

An obvious direction to choose is the direction of the line joining the class
means.

— But if the main direction of variance in each class is not orthogonal to
this line, this will not give good separation (see the next figure).

LDA chooses the direction that maximizes the ratio of between class
variance to within class variance.

— This is the direction in which the projected points contain the most
information about class membership (under Gaussian assumptions)
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lllustration of the advantage of Fisher’s linear discriminants

-2 ) 6 7

When projected onto the line Fisher chooses a direction that makes
joining the class means, the the projected classes much tighter,
classes are not well even though their projected means are
separated. less far apart.
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Math of Fisher’s linear discriminants

* What linear transformation is best for T
discrimination? y=wX
« The projection onto the vector W oc My —My
separating the class means seems
sensible:
2
: s S1:Z(yn_ml)
« But we also want small variance within neCy
each class: 5
Sy = Z (Yn —my)
nECZ
» Fisher’s objective function is: (m, — ml)2 +— between
J(w) =
2 2 s
ST + Sy «— within
Computer Vision - 8 - Pattern recognition concepts 35
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More math of Fisher’s linear discriminants

(my —my)° _ w'Sgw

2 2

S{ + S5 W' Sy W

Sg =(m,-my) (M, —m;)’

Sw = 2 (Xnp—mp) (X, =My + D (Xy—mMy) (X, —my)’

nEC]_ nECZ
Optimal solution : w o Syt (M, —my)

MIA P
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Feature space selection

PCA vs LDA examples:

Scatter plot and the PCA and LDA axes
:

Figure: Projection
onto the first

1 -
. PCA axis.
<0
-1
2
. .
-4 f | ' I'II
4 2 E) 2 4 6 "'.
onto the first LDA
axis.

Scatter plot and the PCA and LDA axes for a bivariate sample with
two classes. Histogram of the projection onto the first LDA axis
shows better separation than the projection onto the first PCA axis.

Computer Vision - 8 - Pattern recognition concepts
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Feature space selection

PCA vs LDA examples:

- ! 1 .
Scatter plot and the PCA and LDA axes - | W

Figure: Projection
onto the first
PCA axis.

Figure: Scatter plot. Figure: Projection
onto the first LDA
axis.

Scatter plot and the PCA and LDA axes for a bivariate sample with
two classes. Histogram of the projection onto the first LDA axis
shows better separation than the projection onto the first PCA axis.

Computer Vision - 8 - Pattern recognition concepts
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Non-Bayesian Classifiers

* Distance-based classifiers:
— Nearest neighbor classier

« Decision boundary-based classifiers:
— Decision trees
— Neural networks
— Support vector machines
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Non-Bayesian Classifiers

« The k-Nearest neighbor Classier:

» Given the training data D = {xy,...,X,} as a set of n labeled

examples, the nearest neighbour classifier assigns a test point
X the label associated with its closest neighbour in D.

":.

The k-nearest neighbour classifier classifies x by ‘ w0 @ T
assigning it the label most frequently represented '
among the £ nearest samples.

Figure: Classifier
for k = 5.

» Closeness is defined using a distance function.
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Non-Bayesian Classifiers

 Distance Functions:

> A general class of metrics for d-dimensional patterns is the
Minkowski metric

d Ip
Ly(x.y) = (Z o = i )
i=1

also referred to as the L, norm.
» The Euclidean distance is the Lo norm

1/2

d / )
La(x.y) = (Z 7 yﬂ) 4§ peo
i=1 pa2
» The Manhattan or city block distance is the L{ norm p=
d T
Li(x,y) =) |zi = uil
i—1
The L., norm is the maximum of the distances along individual
coordinate axes

d
Lec(xy) = max i = wil Figure: Each colored shape consists of points at a distance 1.0 from the

origin, measured using different values of p in the Minkowski L, metric.

Computer Vision - 8 - Pattern recognition concepts 41




Non-Bayesian Classifiers

« Mahalanobis distance:

Multivariate Qutlier Example

— Based on the covariance of each feature with the 4 . ‘ ; . .
class examples. Jl
+ Based on the assumption that distances in the direction of
high variance are less important
+ Highly dependent on a good estimate of covariance. RS .
SR S 3
N TN, %"
— Superior to the Euclidean distance. 2 ° ) =féff“ K
() F OO 2 S AChvi
T AMTE ,,:'{‘:"i S PN AT
NIRRT
I ““‘:‘\ E
_ _2_.......,;.~.....‘... ................ .....................................................
Dy(z) = /(z — p)"P~z — p). ERI .
Where P |S the Covarlance matrlx q3_" ....... ................................... ................. ................. ............... _
4 ;
-3 2 1 0 1 2 3
Feature 1
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Non-Bayesian Classifiers

 Linear Discriminant Functions:

Figure: Linear decision boundaries produced by using one linear
discriminant for each class.
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Non-Bayesian Classifiers

 Discriminative vs Generative models:

— Discriminative models are a class of models used in machine learning for
modelling the dependence of an unobserved variable y on an observed variable x.
Within a statistical framework, this is done by modelling the conditional probability
distribution P(y | x), which can be used for predicting y from x.

— Generative models can randomly generate observable data, typically given some
hidden parameters. It specifies a joint probability distribution over observation and
label sequences. Generative models are used in machine learning for either
modelling data directly or as an intermediate step to forming a conditional probability
density function. A conditional distribution can be formed from a generative model
through the use of Bayes' rule.

« Discriminative models differ from generative models in that they do not allow
one to generate samples from the joint distribution of x and y. However, for
tasks such as classification and regression that do not require the joint
distribution, discriminative models generally yield superior performance. On the
other hand, generative models are typically more flexible than discriminative
models in expressing dependencies in complex learning tasks.

Computer Vision - 8 - Pattern recognition concepts
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Non-Bayesian Classifiers

 Discriminative vs Generative models:

Discriminative models
go right to the point and

Generative models define a decision
estimate the boundary
distributions

Computer Vision - 8 - Pattern recognition concepts
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Non-Bayesian Classifiers

 Decision trees:

level 0
level [
mall
Watermelon Apple Grape Banana Apple (@ level 2
sweet SOUr
Grapefruit Lemon Cherry  Grape level 3

Figure: Decision trees classify a pattern through a sequence of questions,
in which the next question asked depends on the answer to the current

question.
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Non-Bayesian Classifiers

 Decision trees:

» Decision trees are hierarchical decision systems in which
conditions are sequentially tested until a class is accepted

» To this end, the feature space is split into unique regions,
corresponding to the classes, in a sequential manner

» Upon the arrival of a feature vector, the searching of the
region to which the feature vector will be assigned is achieved
via a sequence of decisions along a path of nodes of an
appropriately constructed tree
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MIA P




Non-Bayesian Classifiers

 Decision trees:

» The most popular schemes among decision trees are those
that split the space into hyperrectangles with sides parallel to
the axes

» The sequence of decisions is applied to individual features,
and the questions to be answered are of the form "is the
feature x;, < a?”, where «v is a threshold value

» Such trees are known as ordinary binary classification trees

(OBCTs).

proc growtree(data)
if (data not perfectly classified)
find ‘best’ splitting attribute A
for each a in A
create child a
data_a = data restricted to A = a
growtree(data_a)
endfor
endif

Cs G endproc

X1>0.257

Cs Ci

0.75

Co

xp 050| Ct

Cs o)

0.25 0.75
X1
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Non-Bayesian Classifiers

 Decision trees:

In order to develop a binary decision tree, the following design
elements have to be considered in the training phase:

1. At each node, the set of candidate questions to be asked has
to be decided. Each question corresponds to a specific binary
split into two descendant nodes. Each node ? is associated
with a specific subset S; of the training set S. The splitting o
a node is equivalent to the split of the subset S; into two
disjoint descendants subsets S;y and S; n. The first of the
two consists of the examples in S; that correspond to the
answer 'Yes' of the question and those of the second to the
“No" answer. The first node (root) of the tree is associated
with the training set S.

2. A splitting criterion must be adopted according to which the
best split from the set of candidate ones is chosen.

3. A stop-splitting rule is required that controls the growth of
the tree and a node is declared as a terminal (leaf).

4. A rule is required that assigns each leaf to a specific class.

Computer Vision - 8 - Pattern recognition concepts
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Non-Bayesian Classifiers

 Decision trees:

Set of questions

For the OBCT type of trees the questions are of the form
r; < a?". For each feature, every possible value of the threshold «
defines a specific split of the subset S;. Thus in theory, an infinite

Is

set of questions has to be asked if « varies in an interval in R. In
practice, only a finite set of questions need to be considered. Since
the number of training examples N if finite, any of the features z;
can take at most N; < N different values. Thus, for feature x;,
one can use as possible o values the midvalues of two consecutive
distinct values of z;. The same has to be repeated for all features.
Thus, in such case, the total number of candidate questions is
majored by Zf:l N;. However, only one of them has to be chosen
to provide the binary split at the current node of the tree. This is
selected to be the one that leads to the best split of the associated
subset S;. The best split is decided according to a splitting
criterion.
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Non-Bayesian Classifiers

 Decision trees:

Splitting criterion |

Every binary split of a node ¢ generates two descendant nodes, be
them ?;, and tp, each one associated with two new subsets, .5 1,
and S; g, respectively. There is a class of impurity measures that
quantify how impure each node t of the tree is, where purity
occurs when all cases in a node belong to just one class. From the
root node to the leaves, every split must generate subsets that are
more homogeneous compared to the ancestor set .S;.

One can define the goodness of the split s (comprising a threshold
« and a feature x;) as the decrease of impurity from the ancestor
node to the descendants, reaching more “class homogeneous”
descendants subsets.
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Non-Bayesian Classifiers

* Decision trees:
Splitting criterion ||
If one then adopt a split s at the node ¢, with the proportion of
examples going into node 71 being pr, and the proportion going
into node tr being pgr, using the impurity function /, one can
measure the change of impurity originated by that split as:

Al(s,t) = I(t) — [prlL + prIR]

The greater this difference, the greater the decrease of impurity
and purer nodes are reached. Therefore, one chooses the split that
maximizes this expression, which is equivalent to minimize

rrln + prlR

while the difference remains positive; otherwise the split must not
be performed.

Impurity measures commonly used in classification trees include:
» Entropy index: I(s.t) = — 31 p(Ci|t) logy p(Cilt)

.. K

» Gini index: I(s,t) = Z?-;szl‘_i?_cj p(Ci|t)p(Cyt)
where p(Cj|t) denotes the probability that a vector in the subset
S, associated with a node ¢, belongs to class C;, 7 = 1, ... K.
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Non-Bayesian Classifiers

* Decision trees:
Stop-splitting rule
The natural question that now arises is when one decides to stop
splitting a node and declares it as a leaf of the tree. A possibility is
to stop splitting when the purity improvement of the best split is
below an adopted threshold. Other alternatives are to stop
splitting either if the cardinality of the subset S; is small enough or
if St is pure, in the sense that all points in it belong to a single
class. Experience has shown that the use of a threshold value for
the impurity decrease as a stop-splitting rule does not lead to
satisfactory results. Many times it stops tree growing either too
early or too late. The most commonly used approach is to grow
the tree up to a large size first and then prune nodes according to
a pruning criterion. A number of pruning criteria have been
suggested. A commonly approach is to combine an estimate of the
error probability with a complexity measuring term (e.g. number of
terminal nodes)
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Non-Bayesian Classifiers

 Decision trees:

Class assignment rule
Once a node is declared to be a leaf, then it has to be given a class

label.

» For regression, a commonly used rule is to minimize the mean
square error, leading to predict as the average of the y;in the
leaf.

» For classification of nominal classes, a commonly used rule is
the majority rule, i.e., the leaf is labelled as the class most
represented in the leaf (mode).

» For classification of ordinal classes, a better rule is to select
the median of the values in the leaf.
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Non-Bayesian Classifiers

 MLP:

— Formulated from loose biological principles

— Popularized mid 1980s _ nucleus
« Rumelhart, Hinton & Williams 1986
« Werbos 1974, Ho 1964 an BN

T synapse axon

~—— dendrites

* “learn” pre-processing stage from data

 layered, feed-forward structure
— sigmoidal pre-processing
— task-specific output
non-linear model
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Perceptron

« “Perceptrons” describes a whole family of learning machines, but the
standard type consisted of a layer of fixed non-linear basis functions
followed by a simple linear discriminant function.

— They were introduced in the late 1950’s and they had a simple online
learning procedure.

— Grand claims were made about their abilities. This led to lots of

controversy.
— Researchers in symbolic Al emphasized their limitations (as part of an
ideological campaign against real numbers, probabilities, and learning)
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Perceptron

 Model:
— Rosenblatt (1962)
— Linear separation
— Inputs :Vector of real values
—  Outputs :1 or -1

[
»

1if > wx >0
y= i—0
—1 otherwise

y(x,w) =sgn(W "' X)
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* Defines a plane that linearly O
separates the feature space. + o O

y = sign(v)

|

H | L] W, + W, X, +W,X, =0
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Perceptron

« Decision surface:
— The decision surface for a single perceptron is a line.
— Can represent some functions (AND(x4,X,) for example).
— Can only work on linearly separable problems (fails on the XOR).
— For non-linearly separable problems perceptrons must be organized in networks.

.‘:2 ‘ .1“2 ‘

_|_

_|_
.rr IF
] - - +
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Perceptron

 Error function

One possible error measure is the number of misclassified examples.

Suppose Y ={-1, 1} and the estimated classifier y(x) also outputs a result which is
either +1 or —1.

An example <X(n), Y(n)> is misclassified if Y(n)*y(X(n)) is negative.
So a reasonable error function is just counting the number of examples correctly
classified:

EW)=- LY(I)y X

iemissclassi fied

()

This is called 0-1 loss

— How can we find the best weights W?

MIA P
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 Minimization of the cost function : Kk
— This is an error counting cost function -> J (W) B ZkeM YV

J(w) is always >= 0 (M is the ensemble of bad classified examples)
— y:f, is the target value

Partial cost
— It X“is not well classified : J* (W) = —y¥v¥

— If x* is well classified: J*(w) =0
Partial cost gradient ———

Perceptron algorithm (updates w to reduce J):
if yive >0 (x*is well classified ) :w(k) = w(k -1)
if yiv <0 (x*isnotwell classified ) :w(k) = w(k -1) + y;x"
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 Activation Functions

« Controls when unit is “active” or
“Iinactive”

« Threshold function (sign) outputs1_. .+ *

when input is positive and O -2 -1 0 1 2
otherwise | _1

« Sigmoid function =1/ (1 + e-x)

« Sigmoid function behaves very
closely to the threshold function but
enable backwards error propagation
since it is continuously derivable.
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A Sigmoidal Unit
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« Adding layers to the MLPs and combining
individual perceptrons:

* To handle more complex problems (than linearly
separable ones) we need multiple layers.

+ Each layer receives its inputs from the previous
layer and forwards its outputs to the next layer

* The result is the combination of linear
boundaries which allow the separation of
complex

*  Weights are obtained through the back
propagation algorithm

Computer Vision - 8 - Pattern recognition concepts 64




Different non linearly separable problems
Structure Types of Exclusive-OR Classes with
Decision Regions Problem Meshed regions | Region Shapes

Single-Layer Half Plane a
}K Bounded By
Hyperplane

TWO-CLDayer Convex Open —
N or
M Closed Regions
Three-Layer Abitrary
Py (Complexity
Limited by No. ‘
of Nodes)

Neural Networks — An Introduction Dr. Andrew Hunter

poctoral procraMme  Computer Vision - 8 - Pattern recognition concepts 65
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Neural Network Learning

Back-Propagation Algorithm:

function BACK-PROP-LEARNING(examples, network) returns a neural network
inputs: examples, a set of examples, each with input vector x and output vector y
network, a multilayer network with L layers, weights W,; , activation function g
repeat
for each e in examples do
for each node j in the input layer do a; — x[€]
forl=2to Mdo
in — X W a
a — g(in)
for each node i in the output layer do
A= g(ing) 25 Wy A

forl=M-1to 1do
for each node jin layer | do
A — gi(ing) 25 Wy A
for each nodeiinlayer|+ 1 do
Wi — W+ axa XA
until some stopping criterion is satisfied
return NEURAL-NET-HYPOTHESIS(network)
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HextHNeuron [0] Next
Error[0]
[ ]
% Wil CD
L ]
) HextNeuron [1] Next
Error[i] Error[1]
—q #
output[i] ] Wil O
= a
Neuron[i] : .
a
= I
Error
NHextHeuron [N-1] [N-1]
Layer Next Layer

ARTIFICIAL NEURAL NETWORKS Colin Fahey®"s Guide (Book CD)
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Radial Basis Functions (RBFs)

Features

— One hidden layer

— The activation of a hidden unit is determined by the distance between the input
vector and a prototype vector

4

heotiwvaticn

Computer Vision - 8 - Pattern recognition concepts
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Radial Basis Functions (RBFs)

 RBF hidden layer units have a receptive field which has a
centre
« Generally, the hidden unit function is Gaussian

 The output Layer is linear
« Realized function

/ \

S(X) = ZLWJ‘D(HX —C; H)
HXCJ-H]Z

Computer Vision - 8 - Pattern recognition concepts
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* Learning
— The training is performed by deciding on
 How many hidden nodes there should be
* The centers and the sharpness of the Gaussians
— 2 steps

* |In the 1st stage, the input data set is used to determine the
parameters of the basis functions

* In the 2nd stage, functions are kept fixed while the second
layer weights are estimated ( Simple BP algorithm like for
MLPs)

Computer Vision - 8 - Pattern recognition concepts
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MLPs versus RBFs

« Classification 4
— MLPs separate classes via

hyperplanes X x % x MLP

: 2
— RBFs separate classes via 0%o
hyperspheres

 Learning
— MLPs use distributed learning Xl
— RBFs use localized learning
— RBFs train faster

« Structure X
— MLPs have one or more hidden 2 Jo9 RBE

layers
— RBFs have only one layer

— RBFs require more hidden neurons >
=> curse of dimensionality Xl

MIA P
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Support Vector Machines

« Decision surface is a hyperplane (line in 2D) in feature space (similar to
the Perceptron)

« Arguably, the most important recent discovery in machine learning

. In a nutshell:

— map the data to a predetermined very high-dimensional space via a
kernel function

— Find the hyperplane that maximizes the margin between the two
classes

— If data are not separable find the hyperplane that maximizes the
margin and minimizes the (a weighted average of the)
misclassifications

Slides from: constantin F. Aliferis & loannis Tsamardinos
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Support Vector Machines

e Three main ideas:

1. Define what an optimal hyperplane is (in way that can be identified in
a computationally efficient way): maximize margin

2. Extend the above definition for non-linearly separable problems: have
a penalty term for misclassifications

3. Map data to high dimensional space where it is easier to classify with
linear decision surfaces: reformulate problem so that data is mapped
implicitly to this space
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Support Vector Machines

e Three main ideas:

1. Define what an optimal hyperplane is (in way that can be identified in
a computationally efficient way): maximize margin

2. Extend the above definition for non-linearly separable problems: have
a penalty term for misclassifications

3. Map data to high dimensional space where it is easier to classify with
linear decision surfaces: reformulate problem so that data is mapped
implicitly to this space
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Maximizing the Margin

IDEA 1: Select the
separating
hyperplane that
maximizes the
margin!

Var,

Width - Var2
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Support Vectors

Var,

Support Vectors
.'.'..::llllllllllllll LE RN | )
..”:.... 3 --------.------»
Ce, ...'A

‘/I\/Ia;gin

Width
> \ar,
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Var,

The width of the
margin is:

st. (w-x+b) >k, vx ofclass 1
(w-x+Db) <-k, ¥x of class 2
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Var,

There is a scale and unit
for data so that k=1. Then
problem becomes:

st.(w-x+b)>1, Vxofclass 1
(w-x+b)<-1, Vx of class 2

v

Var,
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Setting

g Up the Optimiza

» |f class 1 corresponds to 1 and class 2 corresponds to -1, we can
rewrite

(W-X +b)>1, Vx withy. =
(W-x +b) <=1, VX withy, =—

y.(W-X. +b)>1, VX

« So the problem becomes:

maxi min l”w”2
w or 2
st.y.(w-x, +b)>1, Vx st.y,(w-x; +b) 21, VX,
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 Find w,b that solves

.1
in o
st.y. (w-x +b)>1 Vx

* Problem is convex so, there is a unique global minimum value (when feasible)

« There is also a unique minimizer, i.e. weight and b value that provides the
minimum

* Non-solvable if the data is not linearly separable

« Quadratic Programming

— Very efficient computationally with modern constraint optimization
engines (handles thousands of constraints and training instances).
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Max Margin Loss Function

Primal
1 _ N—
L(@,b) = 5w Zﬂ o [ty ((0 - £3) + b) — 1]
N—-1
] Y gty
=0
Dual
Wia) = Z oy — = Z oty (T3 25)
i=() £,7=()

where o; > ()

N-—1
Z ﬂfifi_ =0
i=()
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Support Vector Expansion

New decision Function
D(E) = wsign(d™ @+ b)

"N =1 T
= #ign z r'.\r,-l..-:::'i:l F A+ b

| £=0)

"N =1
= Hiyn ( Z t}if-.‘,(:ﬁrf)] 1 b)

L £=()

N—1
w = a;t;T;
=0

* When q; is non-zero then x; is a support vector
* When q; is zero x; is not a support vector
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Support Vector Machines

e Three main ideas:

1. Define what an optimal hyperplane is (in way that can be identified in
a computationally efficient way): maximize margin

2. Extend the above definition for non-linearly separable problems: have
a penalty term for misclassifications

3. Map data to high dimensional space where it is easier to classify with
linear decision surfaces: reformulate problem so that data is mapped
implicitly to this space
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Non-Linearly Separable Data

A

Introduce slack
variables
G

Allow some instances
to fall within the
margin, but penalize
them

Var,

Computer Vision - 8 - Pattern recognition concepts 85




Non-Linearly Separable Data

A Constraint becomes :

Yi(W-X +0) 21~ WX
£>0

Objective function penalizes
for misclassified instances and
those within the margin

Var,

2

1
min EHWH +CZ§i

C trades-off margin width and
misclassifications
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Linnar CQnft_-Marain Q\/Mec
\JU', \ AW 4 I 8 |V|U|H||| W VIVIVD
min = |w[* +C 3 ¢ V(WX +b) 21— &, VX,

2 i fiZO

Algorithm tries to maintain &; to zero while maximizing margin

* Notice: algorithm does not minimize the number of misclassifications (NP-
complete problem) but the sum of distances from the margin hyperplanes

« Other formulations use &?instead

« As C—owm, we get closer to the hard-margin solution
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t !
Var, s
: )
: . !
: U
0 :E 0 :..
0 |:
WX +b=0 Var,
Soft Margin SVN Hard Margin SVN
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Soft vs Hard Margin SVM

« Soft-Margin always have a solution

« Soft-Margin is more robust to outliers
— Smoother surfaces (in the non-linear case)

 Hard-Margin does not require to guess the cost parameter
(requires no parameters at all)

Computer Vision - 8 - Pattern recognition concepts
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Support Vector Machines

e Three main ideas:

1. Define what an optimal hyperplane is (in way that can be identified in
a computationally efficient way): maximize margin

2. Extend the above definition for non-linearly separable problems: have
a penalty term for misclassifications

3. Map data to high dimensional space where it is easier to classify with
linear decision surfaces: reformulate problem so that data is mapped
implicitly to this space

Computer Vision - 8 - Pattern recognition concepts 90




Var,

P
<«

Var,

91

[%2]
fhi
o
(]
(&}
C
(®]
(&}
C
e
=
c
(@]
(]
(&
o
—_
c
—
Q
=
©
o
1
oo
1
c
S
2
>
—
Q
-
>
Q.
€
o
@)




Var,

A

Var,

92

[%2]
fhi
o
(]
(&}
C
(®]
(&}
C
e
=
c
(@]
(]
(&
o
—_
c
—
Q
=
©
o
1
oo
1
c
S
2
>
—
Q
-
>
Q.
€
o
@)




LLIHIccal uidoolliTlio Il 1 IIUI I=LJINTICTIIOIVI IA] OIJG\JUD
Var, Constructed Feature 2
([
[
© (]
o
Q (@) Y [ )
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O
o o ° o ©
© o o o
>0 o
\Var -
< Constructed Feature 1

Find function ®(x) to map to a different space
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« Find function ®(x) to map to a different space, then SVM formulation
becomes:

1 . oy
min EHWHZJFCZ 3 Zt.;;.(w D(X) +b)>1- &, Vx,

« Data appear as ®(x), weights w are now weights in the new space
« Explicit mapping expensive if ®(x) is very high dimensional

« Solving the problem without explicitly mapping the data is desirable
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The Dual of the SVM Formulation

* Original SVM formulation 1
— ninequality constraints - 2
min > [w[” +C2_ ¢,
! i

— N positivity constraints
— n number of § variables

st. yi(w-®(x)+b)=>1-¢&,Vx
& 20

» The (Wolfe) dual of this problem
— one equality constraint

— n positivity constraints 1

— n number of a variables mal_n Ezaiajyiyj(q)(xi)'q)(xj)) _Zai
(Lagrange multipliers) ! i i

— Objective function more

complicated st. C>a, 20,Vx
« NOTICE: Data only appear as Z a,y;, =0
D(x;) - D(x;) i
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Incorporating Kernels in SVMs

N—1 1 N=1
W(ex) = Z g — 3 Z Litjeriog (i) - o))
i={) ij=0

N-1 L N1
Wia)= 3 o - 3 D Liljoiay K (i, )

i—0) i, j—0

» Optimize a's and bias w.r.t. kernel
 Decision function:

& 1
D) = Hign( Y a7 E) +b)
| i—0)

AN —1

D(F) = Hism( > Ha'f'iff(ﬁj)] 'H')

| i—0)
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Polynomial Kernels

K(z,7) = (71 2+ ¢)°
where ¢ > 0

« The dot product is related to a polynomial power of the
original dot product.

 if cis large then focus on linear terms
 if cis small focus on higher order terms
* Very fast to calculate
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Radial Basis Functions

k@) = exp {1 zu?}

202

* The inner product of two points is related to the distance in space
between the two points.

* Placing a bump on each point.
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