
 

 

 
Abstract—This paper presents a highly efficient algorithm for 

detecting and tracking humans and objects in video surveillance 
sequences. Mean shift clustering is applied on background-
differenced image sequences. For efficiency, all calculations are 
performed on integral images. Novel corresponding exponential 
integral kernels are introduced to allow the application of non-
uniform kernels for clustering, which dramatically increases 
robustness without giving up the efficiency of the integral data 
structures. Experimental results demonstrating the power of this 
approach are presented. 

 
Keywords—Clustering, Integral Images, Kernels, Person 

Detection, Person Tracking, Intelligent Video Surveillance.  

I. INTRODUCTION 
LUSTERING is a widespread task in pattern recognition 
and image processing. Mean shift has become one of the 

most popular clustering algorithms over the last decades 
dating back to 1975 [1]. For the special case of video 
surveillance a very efficient approach for clustering difference 
images for detecting and tracking persons was proposed [2]. 
Here, all calculations were based on integral images [3], which 
accelerates the mean shift calculations dramatically. However, 
this approach limited the mean shift calculation to a uniform 
kernel, which reduced the flexibility of this algorithm. In this 
paper, exponential integral kernels are introduced which allow 
mean shift to be calculated on integral images with weighted 
non-uniform kernels. This brings the benefit of very efficient 
calculation and the advantage of weighted clustering 
eliminating outliers and improving overall robustness. 

Section II introduces mean shift applied to background-
differenced video sequences. In Section III the integral image 
methodology is introduced, which highly accelerates the mean 
shift calculation process. Section IV extends this approach by 
constructing non-uniform weighting functions. Finally 
experimental results are presented in Section V. 

II. MEAN SHIFT CLUSTERING 
In this work the focus is on applying mean shift [4] to 

background differenced frames of video sequences. Such 
background differenced images result by subtracting a  
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statistical background model from every incoming video 
frame, resulting in an image like depicted in Fig. 1(b). The 
aim in this case is the detection and classification of 
foreground objects, like humans or vehicles. These 
background-subtracted images are then clustered to detect 
foreground objects. As can be seen these correspond to the 
brighter pixels in the image while the background remains 
dark. 

 

 
(a)                  (b) 

 
Fig. 1 A frame (a) and the corresponding background-differenced  

frame (b) 
 
The mean shift clustering procedure on background-

differenced images is carried out in four steps: 
 
1) Seed points are generated around local maxima in the 

difference image. Around every seed point, an area of interest 
is generated. This area is usually chosen to be rectangular for 
computational complexity; it could just as well be circular or 
elliptical according to the chosen clustering algorithm. The 
size and shape of this area are important tunable parameters, 
usually set to the approximate size of the object to be detected 
and tracked. For this area a weight function is defined, to give 
different weights to the pixels in further calculations. This area 
with its weight function is referred to as „kernel“. In the case 
that all weights are the same (constant) this is called a uniform 
kernel, otherwise a non-uniform kernel. Note that in this paper 
the term kernel is used as a term for a weighting function that 
can be applied for mean shift calculation. 

 
2) On every kernel area, a vector pointing towards the 

highest density point is determined. This point corresponds to 
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the brightest spot with respect to the background-differenced 
sequences. This vector is called the mean shift vector. In the 
case of a uniform kernel the mean shift vector points towards 
the center of gravity which is not necessarily inside an area of 
high density, which can be troublesome in some cases as the 
following sections shows. 

 
3) The kernel is set to the point the mean shift vector 

pointed to, and the whole procedure starts over and over until 
the displacement falls below a certain threshold or a maximum 
number of iterations. Usually convergence is reached within a 
few iterations. These consecutive points, starting from the 
seed point to the point of termination, form the mean shift 
convergence path. 

 
4) All paths converging towards the same mode are sought 

and grouped. Note that in practice, displacements of a few 
pixels may occur due to limited kernel support and rounding 
errors. The grouped seed points form the bounding box of an 
object. Due to the mean shift procedure holes in the difference 
image are bridged, hence objects that are approximately the 
size of the kernel are clustered.  

 
The choice of kernels may differ depending on the task or 

scene, which the mean shift clustering is applied to. A simple 
uniform kernel is much faster to calculate when using integral 
images, while a non-uniform kernel, i.e. a Gaussian kernel, is 
less prone to outliers, however it is not possible to calculate 
the mean shift procedure on the efficient integral images. In 
the following section a non-uniform integral kernel will be 
presented which demonstrates the advantages of a weighted 
kernel and the efficiency of integral image calculations. 

 

A. Calculation of Mean Shift Using a Uniform Kernel 
Assuming a rectangular region of interest and a uniform 

kernel, the mean shift vector is calculated by first summing up 
all pixel values in the region. For a kernel with coordinates 
(x,y) as top-left corner, the sum s is calculated on the Image I  
as: 

 

s = I(p,q)
q= y

y+h

∑
p= x

x+w

∑ . (1) 

 
with w and h as the width and height of this area 

respectively. Further, the x-weighted area sum sx is calculated 
as 

 

sx = x ⋅ I(p,q)
q= y

y+h

∑
p= x

x+w

∑ ,  (2) 

 
and the y-weighted area sum sy is calculated as 
 

sy = y ⋅ I(p,q)
q= y

y+h

∑
p= x

x+w

∑ . (3) 

 
The mean shift vector coordinates (xnew, ynew), which 

represent the coordinates of the next point in the mean shift 
convergence path are thus given by 

 

xnew =
sx

s

ynew =
sy

s

. 

III. INTEGRAL IMAGES 
Usually, the computationally expensive summations must 

be calculated for every single seed point in the image and 
subsequently need to be iterated several times. This 
computationally expensive process can be severely 
accelerated. A speed boost of up to a factor of 30 has been 
measured [2]. 

Three images are pre-calculated on the incoming difference 
image. First, the integral image which is calculated as 

 

int(x, y) = I(p,q)
q= 0

y

∑
p= 0

x

∑ . (5) 

 
The corresponding value at (x,y) is the sum of all gray 

values in the image area [(0,0);(x,y)], which is calculated as 
 

s = sum(ax,ay,bx,by) =
int(bx,by) − int(ax,by) − int(bx,ay) + int(ax,ay)

. (6) 

 
Here the advantage is that the sum of all pixels in the 

desired area [(ax,ay)–(bx,by)] is simply calculated by four 
additions and subtractions. Fig. 2 exemplifies this. 

 
Fig. 2 The area sum of D can be computed by only 4 additions and 

subtractions: (4) + (1) – (2) – (3) 
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The x- and y-weighted integral images are calculated the 
same way, for the x-weighted area sum intx: 
 

int x (x, y) = p ⋅ I(p,q)
q= 0

y

∑
p= 0

x

∑ , (7) 

 
similarly for the y-weighted area sum inty: 

int y (x, y) = q ⋅ I(p,q)
q= 0

y

∑
p= 0

x

∑ . (8) 

 

IV. NON-UNIFORM INTEGRAL KERNELS 
The aim of a non-uniform kernel is to weight pixel values 

differently depending on their location, i.e. by giving pixels 
closer to the kernel center a higher weight than pixels further 
away. Nevertheless it is still desirable to use the efficient 
integral images as data structure. 

Accordingly, the following problem arises: When 
considering a uniform kernel, pixel values are not weighted 
(or just weighted by a constant factor); if a higher weight 
closer to the kernel center is now desired it would be possible 
to basically split the kernel in half and weight each side 
linearly as depicted in Fig. 3. (Note that this will only be 
discussed for the vertical case, the horizontal are calculated 
analogous.) 
 

 
Fig. 3 Constructing a linear kernel resulting in asymmetrical weights 

 
Inside the kernel, the pixel values on the left side are 

weighted with a linear monotonous growing function f2,lin; 
whereas the pixel values on the right side are weighted with a 
linear monotonous falling function f1,lin. Constructing the 
linear weight function W(p) from these two functions, 
weighting becomes asymmetrical. The following equations 
further show this problem for W(p) as a linear function: 

 

xnew =
sx

s
=

y ⋅ Iweighted (p,q)
q= y

y+h

∑
p= x

x+w

∑

Iweighted (p,q)
q= y

y+h

∑
p= x

x+w

∑
=

y ⋅ Iweighted _ left (p,q)
q= y

y+h / 2

∑
p= x

x+w / 2

∑

Iweighted _ left (p,q)
q= y

y+h / 2

∑
p= x

x+w / 2

∑
+

y ⋅ Iweighted _ right (p,q)
q= y+h / 2

y+h

∑
p= x+w / 2

x+w

∑

Iweighted _ right ( p,q)
q= y+h / 2

y+h

∑
p= x+w / 2

x+b

∑

 (9) 

 
 

Iweighted _ left (p,q) = I(p,q) ⋅Wleft (p)
Iweighted _ right (p,q) = I(p,q) ⋅Wright ( p)
Wleft (p) = p
Wright ( p) = B − p

 (10) 

 
When solving these equations, it can be seen the weights are 

not symmetrical. Hence, linear weighting functions cannot be 
applied. 

 

A. The Exponential Integral Kernel 
A self-similar kernel function needs to be found to avoid the 

symmetry problem that was shown when using linear 
functions. This is a function that fulfills  

 
W ( p) = C ⋅W (p + a), (11) 

 
 where C is a constant factor that will be averaged out and a 

is constant shift in x-direction. 
The group of functions that fulfills this condition is the class 

of exponential functions as the following proves: 
 

W (p) = qx

qx = C ⋅ qx+a

qx = C ⋅ qx ⋅ qa

C =
1
qa

 (12) 
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Hence, every exponential function, as exemplified in Fig. 4 
is a suitable weighting function for constructing a weighting 
function that can be applied to integral images to calculate the 
mean shift vector; an integral kernel. 

The weighting function is constructed of two exponential 
functions f1,exp and f2,exp, which have the property of being 
self-similar, and hence guaranteeing a symmetrical weighting 
relative to the kernel center. 

 

 
Fig. 4 A weighting function constructed from two exponential 

functions 

V. EXPERIMENTAL RESULTS 
The proposed method was implemented and applied to 

various test sequences. In Fig. 5 a snapshot of a single frame is 
illustrated comparing the presented mean shift clustering on 
background-differenced images using a uniform kernel to 
using the proposed constructed exponential kernel. The mean 
shift convergence paths are shown and bounding boxes are 
superimposed for each separately detected object, hence for 
each cluster center. 

The applied kernels - no matter if weighted or not- need to 
be rectangular to make use of the integral image data structure 
approximating the human contour outliers. These are bound to 
overlap when humans are in close proximity. This often 
causes mean shift to converge towards the “wrong” object. 
This phenomenon can be seen in Fig. 5 (a). The two persons 
on the left are merged into one cluster, while they are 
separated in Fig. 5 (b) where a weighting towards the kernel 
center was applied. 

In some situation, a slower convergence towards the 
detected cluster centers could be observed, however, further 
calculations and tuning need to be done to fully explore the 
power of this approach. Finally due to the constructed kernel, 
the calculation speed of the weighted kernel in comparison to 
the uniform kernel is insignificantly higher, but the memory 
requirement is increased by a factor of four. 

VI. CONCLUSION 
The task of automatic detection and tracking of objects still 

remains one of the most challenging tasks in intelligent video 

surveillance. Current algorithms still produce too many errors 
and are computationally too inefficient for many real-world 
applications. Hence, the industry is a great driver for research 
in this area.  

In this paper a highly efficient algorithm for detecting and 
tracking objects from static video surveillance cameras was 
presented. Integral images as data structure were exploited to 
achieve this efficiency for clustering background-differenced 
image sequences. This results in clusters for each object in the 
scene. Due to the introduction of the exponential integral 
kernels the robustness and flexibility of this algorithm could 
be improved dramatically. 
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(a)         (b) 

 
Fig. 5 Experimental results: (a) shows mean shift applied using a uniform kernel, while in (b) the proposed constructed exponential integral 

kernel was used 
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