
Visual Event Recognition in Videos by Learning from Web Data

Lixin Duan Dong Xu Ivor W. Tsang
School of Computer Engineering

Nanyang Technological University
{S080003, DongXu, IvorTsang}@ntu.edu.sg

Jiebo Luo
Kodak Research Labs

Eastman Kodak Company, Rochester, NY, USA
Jiebo.Luo@Kodak.com

Abstract

We propose a visual event recognition framework for
consumer domain videos by leveraging a large amount of
loosely labeled web videos (e.g., from YouTube). First,
we propose a new aligned space-time pyramid matching
method to measure the distances between two video clips,
where each video clip is divided into space-time volumes
over multiple levels. We calculate the pair-wise distances
between any two volumes and further integrate the informa-
tion from different volumes with Integer-flow Earth Mover’s
Distance (EMD) to explicitly align the volumes. Second,
we propose a new cross-domain learning method in order
to 1) fuse the information from multiple pyramid levels and
features (i.e., space-time feature and static SIFT feature)
and 2) cope with the considerable variation in feature dis-
tributions between videos from two domains (i.e., web do-
main and consumer domain). For each pyramid level and
each type of local features, we train a set of SVM classi-
fiers based on the combined training set from two domains
using multiple base kernels of different kernel types and
parameters, which are fused with equal weights to obtain
an average classifier. Finally, we propose a cross-domain
learning method, referred to as Adaptive Multiple Kernel
Learning (A-MKL), to learn an adapted classifier based on
multiple base kernels and the prelearned average classi-
fiers by minimizing both the structural risk functional and
the mismatch between data distributions from two domains.
Extensive experiments demonstrate the effectiveness of our
proposed framework that requires only a small number of
labeled consumer videos by leveraging web data.

1. Introduction
With the rapid adoption of digital cameras and mobile

phone cameras, visual event recognition in personal videos
produced by consumers has become an important research
topic due to its usefulness in automatic video retrieval and
indexing. It is a challenging computer vision task to recog-
nize events in consumer domain videos from visual cues be-

cause such videos are captured by amateurs using hand-held
cameras and generally contain considerable camera motion,
occlusion, cluttered background, and large intra-class vari-
ations within the same type of events.

While a large number of video event recognition tech-
niques have been proposed (see Section 2 for more details),
few [3, 14, 16, 18] focused on event recognition in the
highly unconstrained consumer domain. Loui et al. [16] de-
veloped a consumer video data set which was manually la-
beled for 25 concepts including activities, occasions, static
concepts like scenes and objects, as well as sounds. Based
on this data set, Chang et al. [3] developed a multi-modal
consumer video classification system by using visual fea-
tures and audio features. In the web video domain, Liu et
al. [14] employed strategies inspired by PageRank to effec-
tively integrate both motion features and static features for
action recognition in YouTube videos. In [18], action mod-
els were first learned from loosely labeled web images and
then used for identifying human actions in YouTube videos.
However, their work [18] cannot distinguish actions like
“sitting down” and “standing up” because it did not utilize
temporal information in its image-based model.

Most event recognition methods [3, 10, 14, 19, 22, 24,
26] followed the conventional framework. First, a large
corpus of training data is collected, in which the concept
labels are generally obtained through expensive human an-
notation. Next, robust classifiers (also called models or con-
cept detectors) are learned from the training data. Finally,
the classifiers are used to detect the presence of the concepts
in any test data. When sufficient and strong labeled train-
ing samples are provided, these event recognition methods
have achieved promising results. However, it is well-known
that the learned classifiers from a limited number of labeled
training samples are usually not robust and do not general-
ize well.

In this paper, we propose a new event recognition frame-
work for consumer videos by leveraging a large amount
of loosely labeled YouTube videos. Our work is based on
the observation that loosely labeled YouTube videos can be
readily obtained by using keywords (also called tags) based



search. However, the quality of YouTube videos is gener-
ally lower than consumer videos because YouTube videos
are often down-sampled and heavily compressed by the web
server. In addition, YouTube videos may have been selected
and edited to attract attention while consumer videos are in
their natural captured state. Therefore, the feature distribu-
tions of samples from the two domains (i.e., web domain
and consumer domain) may change considerably in terms
of the statistical properties (such as mean, intra-class and
inter-class variance).

Our proposed framework consists of two contributions.
First, we extend the recent work on pyramid matching [6,
10, 12, 25, 26] and present a new aligned space-time pyra-
mid matching method to effectively measure the distances
between two video clips from different domains.

The second is our main contribution. We propose a
new cross-domain learning method, referred to as Adap-
tive Multiple Kernel Learning (A-MKL), in order to cope
with the considerable variation in feature distributions be-
tween videos from the web domain and consumer domain.
Specifically, for each pyramid level and each type of local
features, we train a set of SVM classifiers based on a com-
bined training set from two domains by using multiple base
kernels of different kernel types and parameters, which are
further fused with equal weights to obtain an average clas-
sifier. We also propose a new objective function to learn an
adapted classifier based on multiple base kernels and the
prelearned average classifiers by minimizing both the struc-
tural risk functional and mismatch of data distributions from
two domains.

2. Related Work on Event Recognition
Event recognition methods can be roughly catego-

rized into model-based methods and appearance-based
techniques. Model-based approaches relied on various
models including HMM, coupled HMM, and Dynamic
Bayesian Network [20] to model the temporal evolution.
Appearance-based approaches employed space-time fea-
tures extracted from salient regions with significant local
variations in both spatial and temporal dimensions [11, 19,
22]. Statistical learning methods including Support Vector
Machine (SVM) [22], probabilistic Latent Semantic Anal-
ysis (pLSA) [19], and Boosting [8] were then applied to
the above space-time features to obtain the final classifica-
tion. Promising results [1, 13, 19, 22] have been reported
on video data sets under controlled settings, such as Weiz-
man [1] and KTH [22] data sets.

Recently, researchers proposed new methods to address
the more challenging event recognition task on video data
sets captured under much less uncontrolled conditions, in-
cluding movies [10, 24] and broadcast news videos [26].
In [10], Laptev et al. integrated local space-time features
(i.e., HoG and HoF), space-time pyramid matching and

Figure 1. Illustration of aligned space-time pyramid matching at
level 1. Two videos Vi and Vj are divided into 8 space-time vol-
umes (the matched volumes by using our method are illustrated
with the same colors).

SVM for action classification in movies. Sun et al. [24]
employed Multiple Kernel Learning (MKL) to efficiently
fuse three types of features including SIFT average descrip-
tor and two trajectory-based features. To recognize events
in diverse broadcast news videos, Xu and Chang [26] pro-
posed a multi-level temporal matching algorithm for mea-
suring video similarity.

However, all these methods followed the conventional
learning framework by assuming that the training and test
samples are from the same domain and distribution. When
the total number of labeled training samples is limited, the
performances of these methods would suffer. In contrast,
the goal of this work is to propose an effective event recog-
nition framework for consumer videos by leveraging a large
amount of loosely labeled web videos, where we must deal
with the distribution mismatch of videos from two domains
(i.e., web domain and consumer domain). As a result, our
algorithm can learn a robust classifier for event recognition
when requiring only a small number of labeled consumer
videos.

3. Aligned Space-time Pyramid Matching
Recently, pyramid matching algorithms were proposed

for different applications, such as object recognitions, scene
classification, and event recognition in movies and news
videos [6, 10, 12, 25, 26]. These methods involved pyra-
midal binning in different domains (e.g., feature, spatial,
or temporal domain), and improved performances were
reported by fusing the information from multiple pyra-
mid levels. Spatial pyramid matching [12] and its space-
time extension [10] used fixed block-to-block matching and
fixed volume-to-volume matching (we refer to them as un-
aligned space-time matching), respectively. In contrast, our
proposed aligned pyramid matching extends the methods
of Spatially Aligned Pyramid Matching (SAPM) [25] and
Temporally Aligned Pyramid Matching (TAPM) [26] from
either spatial domain or temporal domain to joint space-
time domain, where the volumes across different space and
time locations may be matched.



Similar to [10], we divide each video clip into 8l non-
overlapped space-time volumes over multiple levels, l =
0, . . . , L−1, where the volume size is set as 1/2l of the orig-
inal video in width, height and temporal dimension. Fig. 1
illustrates the partition for two videos Vi and Vj at level-1.
Following [10], we extract the local space-time (ST) fea-
tures including Histograms of Oriented Gradient (HoG) and
Histograms of Optical Flow (HoF), which are further con-
catenated together to form lengthy feature vectors. We also
sample each video clip to extract image frames and then ex-
tract static local SIFT features from them [17].

Our method consists of two matching stages. In the first
matching stage, we calculate the pairwise distance Drc be-
tween each two space-time volumes Vi(r) and Vj(c), where
r, c = 1, . . . , R with R being the total number of volumes
in a video. The space-time features are vector-quantized
into visual words and then each space-time volume is repre-
sented as a token-frequency feature. As suggested in [10],
we use χ2 distance to measure the distance Drc. Note that
each space-time volume consists of a set of image blocks.
We also extract toke-frequency (tf) features from each im-
age block by vector-quantizing the corresponding SIFT fea-
tures into visual words. And based on the SIFT features,
as suggested in [26], the pairwise distance Drc between
two volumes Vi(r) and Vj(c) is calculated by using Earth

Mover’s Distance (EMD), i.e., Drc =
∑H

u=1

∑I
v=1 f̂uvduv∑H

u=1

∑I
v=1 f̂uv

,

where H, I are the numbers of image blocks in Vi(r), Vj(c)
respectively, duv is the distance between two image block
(Euclidean distance is used in this work), and f̂uv is the
optimal flow that can be obtained by solving the linear pro-
gramming problem as follows:

f̂uv = arg min
fuv≥0

H∑
u=1

I∑
v=1

fuvduv,

s.t.
H∑
u=1

I∑
v=1

fuv = 1;

I∑
v=1

fuv ≤
1

H
,∀u;

H∑
u=1

fuv ≤
1

I
,∀v

In the second stage, we further integrate the information
from different volumes with Integer-flow EMD to explicitly
align the volumes. We try to solve a flow matrix F̂rc con-
taining binary elements that represent unique matches be-
tween volumes Vi(r) and Vj(c). As suggested in [25, 26],
such binary solution can be conveniently computed by us-
ing the standard Simplex method for linear programming.
The following Theorem 1 is utilized:
Theorem 1 ([25, 26]). The linear programming problem

F̂rc = arg min
Frc∈{0,1}

R∑
r=1

R∑
c=1

FrcDrc,

s.t.
R∑
c=1

Frc = 1, ∀r;
R∑
r=1

Frc = 1, ∀c,

will always have an integer optimum solution when solved
with the Simplex method.

Finally, the distance Dl(Vi, Vj) between two video
clips Vi and Vj at level-l can be directly calculated by

Dl(Vi, Vj) =
∑R

r=1

∑R
c=1 F̂rcDrc∑R

r=1

∑R
c=1 F̂rc

.
In the next section, we will propose a new cross-domain

learning method to fuse the information from multiple pyra-
mid levels and different types of features.

4. Adaptive Multiple Kernel Learning
Following the prior terminology, we refer to the web

video domain as auxiliary domain DA (also known as
source domain) and consumer video domain as target do-
main DT = DT

l ∪DT
u , where DT

l and DT
u represent the la-

beled and unlabeled data in the target domain. In this work,
we denote I as the identity matrix and 0,1 ∈ <n as the
column vectors of all zeros and all ones, respectively. The
inequality a = [a1, . . . , an]′ ≥ 0 means that ai ≥ 0 for
i = 1, . . . , n. Moreover, the element-wise product between
vectors a and b is defined as a ◦ b = [a1b1, . . . , anbn]′.

4.1. Brief review of related learning work
Cross-domain learning methods have been proposed for

many applications [4, 5, 15, 27]. To take advantage of all
labeled patterns from both auxiliary and target domains,
Daumé III [4] proposed Feature Replication (FR) by using
augmented features for SVM training. In Adaptive SVM
(A-SVM) [27], the target classifier fT (x) is adapted from
an existing classifier fA(x) (referred to as auxiliary clas-
sifier) trained based on the samples from the auxiliary do-
main. Specifically, the target decision function is defined as
fT (x) = fA(x) + ∆f(x), where ∆f(x) is the so-called
perturbation function. While A-SVM can also employ
multiple auxiliary classifiers, these auxiliary classifiers are
equally fused to obtain fA(x). Moreover, the target classi-
fier fT (x) is learned based on only one kernel. Recently,
Duan [5] proposed Domain Transfer SVM (DTSVM) to si-
multaneously reduce the mismatch in the distributions be-
tween two domains and learn a target decision function.
The mismatch was measured by Maximum Mean Discrep-
ancy (MMD) [2] based on the distance between the means
of samples from the auxiliary domainDA and the target do-
mainDT in the Reproducing Kernel Hilbert Space (RKHS),
namely:

DISTk(D
A, DT ) =

∥∥∥∥∥ 1

nA

nA∑
i=1

ϕ(xA
i )−

1

nT

nT∑
i=1

ϕ(xT
i )

∥∥∥∥∥
H

, (1)

where xAi ’s and xTi ’s are the samples from the auxiliary
and target domains, respectively, and a kernel function k is
induced from the nonlinear feature mapping function ϕ(·),
i.e., k(xi,xj) = ϕ(xi)

′ϕ(xj). We define a column vector
s with N = nA + nT entries, in which the first nA entries
are set as 1/nA and the remaining entries are set as−1/nT ,
respectively. Thus, the MMD criterion in (1) can be simpli-
fied to [2, 5]:

DIST2
k(DA, DT ) = tr(KS), (2)



where S = ss′ ∈ <N×N , and K =

[
KA,A KA,T

KT,A KT,T

]
∈

<N×N , and KA,A ∈ <nA×nA , KT,T ∈ <nT×nT and
KA,T ∈ <nA×nT are the kernel matrices defined for the
auxiliary domain, the target domain and the cross-domain
from the auxiliary domain to the target domain, respec-
tively.

4.2. Proposed formulation and solution
Motivated by A-SVM and DTSVM, we propose a new

cross-domain learning method, referred to as Adaptive Mul-
tiple Kernel Learning (A-MKL), to learn a target classi-
fier adapted from a set of prelearned classifiers as well as
a perturbation function which is based on multiple base
kernels km’s. The prelearned classifiers are used as prior
for learning a robust adapted target classifier. Specifically,
we train a set of independent classifiers for each pyramid
level and each type of local features using the training data
from two domains. We further equally fuse these classi-
fiers to obtain average classifiers fSIFTl (x) and fSTl (x),
l = 0, . . . , L − 1. These classifiers are then used as
prelearned classifiers fp(x)|Pp=1. In our work, the kernel
function k is a linear combination of base kernels km’s,
i.e., k =

∑M
m=1 dmkm, where dm is the linear combi-

nation coefficient, and the kernel function km is induced
from the nonlinear feature mapping function ϕm(·), i.e.,
km(xi,xj) = ϕm(xi)

′ϕm(xj). Inspired by semiparamet-
ric SVM [23], we define the target decision function on any
sample x as follows:

fT (x) =

P∑
p=1

βpfp(x) +

M∑
m=1

dmw′mϕm(x) + b, (3)

where fp(x)’s are the prelearned classifiers trained based
on the labeled data from both domains, ∆f(x) =∑M
m=1 dmw′mϕm(x) + b is the perturbation function with

the bias term b. Let us define the coefficient vector d =
[d1, . . . , dM ]′ which belongs to D = {d ∈ <M |d′1 =
1,d ≥ 0}. In A-MKL, the first objective is to reduce the
mismatch in data distributions between two domains. As
shown in [5], (2) can be rewritten as:

DIST2
k(DA, DT ) = Ω(d) = h′d, (4)

where h = [tr(K1S), . . . , tr(KMS)]′, and Km =
[ϕm(x)′ϕm(x)] ∈ <N×N is the mth base kernel matrix
defined on the samples from both auxiliary and target do-
mains.

The second objective of A-MKL is to minimize the struc-
tural risk functional. Given the labeled training samples
(xi, yi)|ni=1 from DA ∪ DT

l , the optimization problem in
A-MKL is then formulated as follows:

min
d∈D

G(d) =
1

2
Ω2(d) + θ J(d), (5)

where

J(d)= min
wm,β,b,ξi

1

2

(
M∑
m=1

dm‖wm‖2+λ‖β‖2
)

+C

n∑
i=1

ξi,(6)

s.t. yif
T (xi) ≥ 1− ξi, ξi ≥ 0,

β = [β1, . . . , βP ]′ and λ,C > 0 are the regu-
larization parameters. Denote w̃m = [w′m,

√
λβ′]′

and ϕ̃m(xi) = [ϕm(xi)
′, 1√

λ
f(xi)

′]′, where f(xi) =

[f1(xi), . . . , fP (xi)]
′. Let us define ṽm = dmw̃m. The

optimization problem in (6) then becomes a quadratic pro-
gramming (QP) problem [21]:

J(d) = min
ṽm,b,ξi

1

2

M∑
m=1

‖ṽm‖2

dm
+ C

n∑
i=1

ξi, (7)

s.t. yi

(
M∑
m=1

ṽ′mϕ̃m(xi)+b

)
≥ 1− ξi, ξi ≥ 0.

By introducing the Lagrangian multipliers α =
[α1, . . . , αn]′, the dual of (7) becomes (see [21] for the de-
tailed derivation):

J(d) = max
α∈A

α′1− 1

2
(α ◦ y)′

(
M∑
m=1

dmK̃m

)
(α ◦ y), (8)

where J(d) is linear in d, A = {α ∈ <n|α′y = 0,0 ≤
α ≤ C1}, y = [y1, . . . , yn]′, K̃m = [ϕ̃m(xi)

′ϕ̃m(xj)] ∈
<n×n is defined by the labeled training data from both
domains, and ϕ̃m(xi)

′ϕ̃m(xj) = ϕm(xi)
′ϕm(xj) +

1
λf(xi)

′f(xj). Surprisingly, the optimization problem in
(8) is in the same form as the dual of SVM with the kernel
matrix

∑M
m=1dmK̃m. Thus, the optimization problem can

be solved by existing SVM solvers, such as LIBSVM.
In a similar fashion to [5, 21], we can prove that the opti-

mization problem in (5) is jointly convex with respect to d,
ṽm, b and ξi (we omit the detailed proof due to space limi-
tation). Then, we employ the alternative coordinate descent
procedure proposed in [21] to update different variables (α
and d) in (5) with (8) iteratively to obtain the globally op-
timal solution. With a fixed dt at the tth iteration, the dual
variables αt can be solved by using LIBSVM. According
to [5], d is updated at iteration t+ 1 by:

dt+1 = dt − ηtgt ∈ D, (9)

where gt = (∇2
tG)−1∇tG is the updating direction and ηt

is the learning rate which can be obtained by standard line-
search methods [21]. With respect to dt at the tth iteration,
∇tG = hh′dt + θ∇tJ is the gradient of G in (5), where
∇tJ is the gradient of J in (8). And the Hessian of G is
∇2
tG = hh′. Note that hh′ is not full rank. Therefore,

we replace hh′ by hh′ + εI to avoid numerical instability,
where ε is set as 10−4 in the experiments. The whole pro-
cedure is summarized in Algorithm 1 as follows:



Algorithm 1 Adaptive Multiple Kernel Learning
Initialization: d⇐ 1

M 1.
for t = 1, . . . , Tmax do

1) Solve the dual variables αt by the dual of SVM us-
ing LIBSVM with the kernel matrix

∑M
m=1 dmK̃m.

2) Update the base kernel coefficients dt using (9).
end for

Note that by setting the derivative of the La-
grangian obtained from (6) to zero, we can obtain
w̃m = ṽm

dm
=
∑n
i=1 αiyiϕ̃m(xi). Thus, with the optimal

dual variables α and linear combination coefficients d,
the target decision function (3) of our method A-MKL
can be rewritten as fT (x) =

∑M
m=1 dmw̃′mϕ̃m(x) +

b =
∑n
i=1 αiyi

∑M
m=1 dmK̃m(xi,x) + b =∑n

i=1 αiyi

(∑M
m=1 dmKm(xi,x) + 1

λf(xi)
′f(x)

)
+ b.

4.3. Differences from related learning work
A-SVM [27] also assumes that the target classifier fT (x)

is adapted from existing auxiliary classifiers fAp (x)’s. How-
ever, our proposed method A-MKL is different from A-
SVM in several aspects: 1) In A-SVM, the auxiliary classi-
fiers are equally fused in the target classifier, i.e., fT (x) =
1
P

∑P
p=1 f

A
p (x) + ∆f(x). In contrast, A-MKL learns the

optimal combination coefficients βp’s in (3); 2) In A-SVM,
the perturbation function ∆f(x) is based on one single ker-
nel, i.e., ∆f(x) = w′ϕ(x) + b. However, in A-MKL, the
perturbation function ∆f(x) =

∑M
m=1 dmw′mϕm(x) + b

in (3) is based on multiple kernels, and the optimal kernel
combination is automatically determined during the learn-
ing process; 3) A-SVM cannot utilize the unlabeled data
in the target domain. In contrast, the valuable unlabeled
data in the target domain is used in the MMD criterion of
A-MKL for measuring the distribution mismatch of two do-
mains.

Our work is also different from the prior work of
DTSVM [5], where the target decision function fT (x) =∑M
m=1 dmw′mϕm(x) + b is only based on multiple base

kernels. In contrast, in A-MKL, thanks to the very few tar-
get labeled patterns, we use a set of prelearned classifiers
fp(x)’s as the parametric functions, and model the pertur-
bation function ∆f(x) based on multiple base kernels in
order to better fit the target decision function. To fuse mul-
tiple prelearned average classifiers from multiple pyramid
levels and different types of features, we also learn the op-
timal linear combination coefficients βp’s. As shown in the
experiments, our A-MKL is more robust in real applications
by utilizing optimally combined average classifiers as the
prior.

MKL methods [9, 21] utilize the training data and the test
data drawn from the same domain. When they come from
different distributions, MKL methods may fail to learn the

optimal kernel. This would degrade the classification per-
formance in the target domain. On the contrary, A-MKL
can better make use of the data from two domains to im-
prove the classification performance.

5. Experiments
In this section, we first evaluate the effectiveness of

the proposed aligned space-time pyramid matching method.
We then compare our proposed method Adaptive Multi-
ple Kernel Learning (A-MKL) with the baseline SVM, and
three existing cross-domain learning algorithms: Feature
Replication (FR) [4], Adaptive SVM (A-SVM) [27] and
Domain Transfer SVM (DTSVM) [5], as well as a Multi-
ple Kernel Learning (MKL) method discussed in [5]. For
all methods, we train one-versus-all classifiers with a fixed
regularization parameter C = 1. For performance evalu-
ation, we use the same non-interpolated Average Precision
(AP) as in [10, 26]. Mean Average Precision (MAP) is the
mean of APs over all the event classes.

5.1. Data set description
Part of the test data set is derived (under a usage agree-

ment) from the Kodak Consumer Video Benchmark Data
Set [16], which was collected by Kodak from about 100
real users over the period of one year. There are 1358 con-
sumer video clips in the Kodak data set. A second part of
the Kodak data set contains web videos from YouTube col-
lected using keywords based search. After removing TV
commercial videos and low-quality videos, there are 1873
YouTube video clips in total. An ontology of 25 semantic
concepts were defined and keyframe based annotation was
performed by the students at Columbia University to assign
binary labels (presence or absence) for each visual concept
for both sets of videos (see [16] for more details).

In this work, six events “wedding”, “birthday”, “picnic”,
“parade”, “show”, and “sports” are chosen for experiments.
We additionally collected new consumer video clips from
real users on our own. Similarly to [16], we also down-
loaded new YouTube videos from the website. Moreover,
we also annotate the consumer videos to determine whether
a specific event occurred by asking an annotator, who is
not involved in algorithmic design, to watch each video clip
rather than just look at the key frames as done in [16]. For
video clips in the Kodak consumer data set [16], only the
video clips receiving positive labels in their keyframe based
annotation are re-examined. We do not additionally anno-
tate the YouTube videos1 collected by ourselves and Ko-
dak because in a real scenario we can only obtain loosely
labeled YouTube videos and cannot use any further man-
ual annotation. It should be clear that our consumer video
set comes from two sources – the Kodak consumer video

1The annotator felt that at least 20% of YouTube videos are incorrectly
labeled after checking the video clips.



data set and our additional collection of personal videos,
and our web video set is a combined set of YouTube videos
as well. We confirm that quality of YouTube videos are
much lower than that of consumer videos directly collected
from real users. Therefore, our data set is quite challenging
for cross-domain learning algorithms. The total numbers
of consumer videos and YouTube videos are 195 and 906,
respectively.

In real-world applications, the labeled samples in the tar-
get domain (i.e., consumer video domain) are much fewer
than those in the auxiliary domain (i.e., web video domain).
In this work, all 906 loosely labeled YouTube videos are
used as the training data in the auxiliary domain. We ran-
domly sample three consumer videos from each event (18
videos in total) as the labeled training videos in the target
domain, and the rest videos in the target domain are used as
the test data. We sample the labeled target training videos
for five times and report the means and standard deviations
of MAPs or per-event APs for each method.

5.2. Aligned Space-time Pyramid Matching vs. Un-
aligned Space-time Pyramid Matching

We compare our proposed aligned space-time pyramid
matching method discussed in Section 3 with the fixed
volume-to-volume matching method (referred to as un-
aligned space-time pyramid matching) used in [10]. In [10],
the space-time volumes of one video clip are matched with
the volumes of the other video at the same spatial and tem-
poral locations at each level. In other words, the second
matching stage based on Integer-flow EMD is not applied
and the distance between two video clips is equal to the sum
of diagonal elements of the distance matrix, i.e.,

∑R
r=1Drr.

For computational efficiency, we set the total number of lev-
elsL = 2 in this work. Therefore, we have two types of par-
titions, in which one video clip is divided into 1 and 2×2×2
space-time volumes, respectively.

For all the videos in the data sets, we extract two types
of features. The first one is the local space-time (ST) fea-
ture [10], in which 72-dimensional Histograms of Oriented
Gradient (HoG) and 90-dimensional Histograms of Opti-
cal Flow (HoF) are extracted by using the online tool2.
After that, they are concatenated together to form a 162-
dimensional feature vector. We also sample each video clip
at a rate of 2 frames per second to extract image frames from
each video clip (we have 65 frames per video on average).
For each frame, we extract 128-dimensional SIFT features
from salient regions, which are detected by Difference-of-
Gaussian (DoG) interest point detector [17]. On average,
we have 1385 ST features and 4144 SIFT features per video.
Then, we build visual vocabularies by using K-Means to
group the ST features and SIFT features into 1000 and 2500

2http://www.irisa.fr/vista/Equipe/People/
Laptev/download.html.

clusters, respectively.
We use the baseline SVM classifier based on the com-

bined training data set from two domains (consumer do-
main and web domain). We test the performances with
four types of kernels: Gaussian kernel (i.e., K(i, j) =
exp

(
−γD2(Vi, Vj)

)
), Laplacian kernel (i.e., K(i, j) =

exp
(
−√γD(Vi, Vj)

)
), inverse square distance (ISD) ker-

nel (i.e., K(i, j) = 1
γD2(Vi,Vj)+1 ) and inverse distance (ID)

kernel (i.e., K(i, j) = 1√
γD(Vi,Vj)+1 ), where D(Vi, Vj)

represents the distance between video Vi and Vj , and γ is
the kernel parameter. We use the default kernel parameter
γ = γ0 = 1

A with A being the mean value of square dis-
tances between all training samples, as suggested in [10].

Tables 1 and 2 show the MAPs for SIFT and ST fea-
tures at different levels. Based on the means of MAPs,
we have the following three observations: 1) In all cases,
the results at level-1 using aligned matching are better than
those at level-0 based on SIFT features, which demonstrates
the effectiveness of space-time partition and it is also con-
sistent with the findings for prior pyramid matching meth-
ods [10, 12, 25, 26]; 2) At level-1, our proposed aligned
space-time pyramid matching method outperforms the un-
aligned space-time pyramid matching method used in [10],
thanks to the additional alignment of space-time volumes;
3) The results from space-time features are not as good as
those from static SIFT features. As also reported in [7], a
possible explanation is that the extracted ST features may
fall on cluttered backgrounds because the consumer videos
are generally captured by amateurs with hand-held cameras.

5.3. Comparisons of cross domain learning methods
We also evaluate the performance of our proposed cross-

domain learning method discussed in Section 4. In this
experiment, we make use of 20 base kernels from four
kernel types (i.e., Gaussian kernel, Laplacian kernel, ISD
kernel and ID kernel) and five kernel parameters. We set
γ = 4n−1γ0, where n ∈ {−2,−1, . . . , 2}, γ0 = 1

A is the
default kernel parameter. In total, we have 80 kernels from
two pyramid levels, two types of local features, and 20 base
kernels.

All methods are compared in three cases: (a) clas-
sifiers learned based on SIFT features; (b) classifiers
learned based on ST features; and (c) classifiers learned
based on both SIFT and ST features. For SVM AT
and FR (resp. SVM T), we train 20 independent classi-
fiers for each pyramid level and each type of local fea-
tures using the training samples from two domains (resp.
the training samples from target domain) and the corre-
sponding 20 base kernels, which are further fused with
equal weights to obtain the average classifier fSIFTl or
fSTl , l=0, 1. For SVM T, SVM AT and FR, the final
classifier is obtained by fusing average classifiers with
equal weights (e.g., 1

2

(
fSIFT0 + fSIFT1

)
for case (a) and

http://www.irisa.fr/vista/Equipe/People/Laptev/download.html
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Table 1. Means and standard deviations (%) of MAPs at differ-
ent levels using SVM with the default kernel parameter for SIFT
features.

Gaussian Laplacian ISD ID
Level-0 41.4± 3.7 44.2± 3.8 45.0± 3.5 46.2± 4.0

Level-1 (Unaligned) 43.0± 2.7 47.7± 1.7 49.0± 1.6 48.2± 1.5

Level-1 (Aligned) 50.4± 3.7 53.8± 1.8 52.9± 3.6 51.0± 2.5

Table 2. Means and standard deviations (%) of MAPs at different
levels using SVM with the default kernel parameter for ST fea-
tures.

Gaussian Laplacian ISD ID
Level-0 22.2± 1.8 36.1± 0.8 22.0± 3.8 35.6± 0.7

Level-1 (Unaligned) 20.1± 1.0 33.9± 0.6 21.8± 0.7 33.4± 0.7

Level-1 (Aligned) 20.6± 0.7 35.8± 1.7 22.3± 1.1 35.9± 1.8

1
4

(
fSIFT0 + fSIFT1 + fST0 + fST1

)
for case (c)). For A-

SVM, we learn 20 independent auxiliary classifiers for each
pyramid level and each type of local features using the train-
ing data from the auxiliary domain and the correspond-
ing 20 base kernels, and then we independently learn four
adapted target classifies using the labeled training data from
the target domain based on Gaussian kernel with the de-
fault kernel parameter [27]. The final classifier is obtained
by fusing four adapted target classifiers. For MKL and
DTSVM, we simultaneously learn the linear combination
coefficients of 40 base kernels (for cases (a) or (b)) or 80
base kernels (for case (c)) by using the combined training
samples from both domains. For our method A-MKL, we
learn an adapted classifier based on two average classifiers
fSIFTl |1l=0 or fSTl |1l=0 (for cases (a) and (b)), or all the four
average classifiers (for case (c)) as well as multiple base ker-
nels (40 base kernels for cases (a) and (b), and 80 base ker-
nels for case (c)). For A-MKL, we empirically fix θ = 10−4

and set λ = 10 for all three cases. Considering that DTSVM
and A-MKL can take advantage of both labeled and unla-
beled data by using the MMD criterion to measure the mis-
match in data distributions between two domains, we use
semi-supervised setting in this work. More specifically, all
the samples (including test samples) from the target domain
and auxiliary domain are used to calculate h in (4). Note
that all test samples are used as unlabeled data during the
learning process.

In Fig. 2 and Table 3, we compare our proposed method
A-MKL with SVM T, SVM AT, FR, A-SVM, MKL and
DTSVM. We have the following observations:
1) The best result of SVM T is worse than that of SVM AT,
which demonstrates that the learned SVM classifiers based
on a limited number of training samples from the target do-
main are not robust. We also observe that SVM T is better
than SVM AT for cases (b) and (c). A possible explana-
tion is that the ST feature is not robust enough so that the
samples from auxiliary domain and target domain distribute
sparsely in this feature space. Therefore, it is more likely
that the data from the auxiliary domain may degrade the
event recognition accuracies for cases (b) and (c).

2) In this application, A-SVM achieves the worst results in
terms of the means of MAPs in three cases, possibly be-
cause the limited number of labeled training samples in the
target domain (e.g., 3 samples per event) are not sufficient
for A-SVM to robustly learn an adapted target classifier,
which is only based on one Gaussian kernel.
3) Similarly to the prior work [5], DTSVM outperforms
MKL in almost all cases in terms of the means of per-event
APs in Fig. 2. And DTSVM is also better than MKL in
terms of the means of MAPs in Table 3. This is consistent
with [5].
4) For all methods, the MAPs based on SIFT features are
better compared with ST features. In practice, two simple
ensemble methods, SVM AT and FR, achieve good perfor-
mances when only using the SIFT features in case (a). It
indicates that SIFT features are more effective for event
recognition in consumer videos. However, the MAPs of
SVM AT, FR and A-SVM in case (c) are much worse com-
pared with case (a). It suggests that the simple late fusion
method using equal weights are not robust for integrating
strong features and weak features. In contrast, for MKL,
DTSVM and our method, the results in case (c) are im-
proved by learning optimal linear combination coefficients
to effectively fuse two types of features.
5) Our proposed method A-MKL achieves the best MAPs
in all three cases by effectively fusing four average classi-
fiers (from two pyramid levels and two types of local fea-
tures) and multiple base kernels as well as reducing the mis-
match in the data distributions between two domains. We
also believe the utilization of multiple base kernels and pre-
learned average classifiers can also well cope with noisy
YouTube videos. In case (c), our method achieves the best
performances in 4 out of 6 events and some concepts en-
joy large performance gains according to the means of Per-
event APs. Compared with the best means of MAPs of
SVM T (42.3%), SVM AT (53.3%), FR (53.8%), A-SVM
(38.7%), MKL (42.5%) and DTSVM (52.7%), the relative
improvements of our best result (57.9%) are 36.9%, 8.6%,
7.6%, 49.6%, 36.2% and 9.9%, respectively.

6. Conclusion
In this paper, we propose a new event recognition frame-

work for consumer domain videos by leveraging a large
amount of loosely labeled YouTube videos. Specifically,
we propose a new aligned space-time pyramid matching
method and a novel cross-domain learning method to bet-
ter fuse the information from multiple pyramid levels and
different types of local features and to cope with the mis-
match in data distribution of consumer video domain and
web video domain. Experiments clearly demonstrate the ef-
fectiveness of our framework. To the best of our knowledge,
our work is the first to perform event recognition in con-
sumer videos by incorporating cost-effective cross-domain
learning.



Table 3. Means and standard deviations (%) of MAPs of all methods over the six events in three cases.
SVM T SVM AT FR A-SVM MKL DTSVM A-MKL

MAP-(a) 42.3± 5.2 53.3± 4.4 53.8± 1.8 38.7± 7.6 42.4± 2.4 48.5± 2.7 56.2± 2.7
MAP-(b) 33.4± 1.3 25.3± 0.5 29.2± 1.5 25.1± 0.7 35.2± 1.5 35.3± 1.0 37.2± 2.0
MAP-(c) 42.0± 4.9 34.6± 1.4 46.0± 1.6 31.9± 4.4 42.5± 4.6 52.7± 2.4 57.9± 1.7

Figure 2. Means and standard deviations of per-event APs of six events for all methods.
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