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What is pattern recognition? 

 A pattern is an object, process or event that can be 

given a name. 

 A pattern class (or category) is a set of patterns sharing 

common attributes and usually originating from the 

same source. 

 During recognition (or classification) given objects are 

assigned to prescribed classes. 

 A classifier is a machine which performs classification. 

“The assignment of a physical object or event to one of several prespecified 
categories” -- Duda & Hart 
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Examples of applications 

• Optical Character 

Recognition (OCR) 

• Biometrics 

• Diagnostic systems 

• Military applications 

• Handwritten: sorting letters by postal 
code, input device for PDA‘s. 

• Printed texts: reading machines for blind 
people, digitalization of  text documents. 

• Face recognition, verification, retrieval.  

• Finger prints recognition. 

• Speech recognition. 

• Medical diagnosis: X-Ray, EKG analysis. 

• Machine diagnostics, waster detection.  

• Automated Target Recognition (ATR). 

• Image segmentation and analysis 
(recognition from aerial or satelite 
photographs). 
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Basic concepts 
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Feature vector  

- A vector of observations (measurements).  

-     is a point in feature space     . 

Hidden state 

- Cannot be directly measured. 

- Patterns with equal hidden state belong to the same class. 

Xx

x X

Yy

Task 

- To design a classifer (decision rule)  

which decides about a hidden state based on an onbservation. 

YX :q

Pattern 

4 



Example 
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Components of PR system 

Sensors and  

preprocessing 

Feature 

extraction 
Classifier         

Class 

assignment 

• Sensors and preprocessing. 

• A feature extraction aims to create discriminative features good for 
classification. 

• A classifier. 

• A teacher provides information about hidden state -- supervised learning. 

• A learning algorithm sets PR from training examples.  

 

Learning algorithm Teacher 

Pattern 
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Feature extraction 

Task: to extract features which are good for classification. 

Good features:  • Objects from the same class have similar feature 
values. 

• Objects from different classes have different values. 

“Good” features “Bad” features 
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Feature extraction methods 
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Feature extraction Feature selection 

Problem can be expressed as optimization of parameters of feature extractor                     

  

Supervised methods: objective function is a criterion of separability 

(discriminability) of labeled examples, e.g., linear discriminat analysis (LDA). 

Unsupervised methods: lower dimensional representation which preserves 

important characteristics of input data is sought for, e.g., principal component 

analysis (PCA). 

φ(θ)
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Classifier 
A classifier partitions feature space X into class-labeled regions 

such that 

||21 YXXXX   }0{||21  YXXX and 

1X 3X

2X

1X

1X

2X

3X

The classification consists of determining to which region a feature vector x 

belongs to. 

Borders between decision boundaries are called decision regions. 
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Representation of classifier 

A classifier is typically represented as a set of discriminant functions  

||,,1,:)(f YX  ii x

The classifier assigns a feature vector x to the i-the 

class if  )(f)(f xx ji  ij 

)(f1 x

)(f2 x

)(f || xY

maxx y

Feature 

vector 

Discriminant function 

Class identifier 
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Review: What We’ve Learned So Far 

 Bayesian Decision Theory 

 Maximum-Likelihood & Bayesian Parameter Estimation 

 Parametric Density Estimation 

 Nonparametric Density Estimation 

 Parzen-Window, kn-Nearest-Neighbor 

 

 

 

 K-Nearest Neighbor Classifier 

 Decision Tree Classifier  
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Today: Support Vector Machine (SVM) 

 A classifier derived from statistical learning theory by Vapnik, et 

al. in 1992 

 SVM became famous when, using images as input, it gave 

accuracy comparable to neural-network with hand-designed 

features in a handwriting recognition task 

 Currently, SVM is widely used in object detection & recognition, 

content-based image retrieval, text recognition, biometrics, 

speech recognition, etc. 

 Also used for regression (will not cover today) 

 

V. Vapnik 
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Outline 

 Linear Discriminant Function 

 Large Margin Linear Classifier 

 Nonlinear SVM: The Kernel Trick 

 Demo of SVM 

 

 

 

Slides from Jinwei Gu 
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Discriminant Function 

 It can be arbitrary functions of x, such as: 

Nearest  

Neighbor 

Decision  

Tree 
Linear 

Functions 

( ) Tg b x w x

Nonlinear 

Functions 
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Linear Discriminant Function 

 g(x) is a linear function: 

( ) Tg b x w x

x1 

x2 

wT x + b < 0 

wT x + b > 0 

 A hyper-plane in the 

feature space 

 (Unit-length) normal vector 

of the hyper-plane: 


w

n
w

n 
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 How would you classify 

these points using a linear 

discriminant function in order 

to minimize the error rate? 

Linear Discriminant Function 
denotes +1 

denotes -1 

x1 

x2 

 Infinite number of answers! 
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 How would you classify 

these points using a linear 

discriminant function in order 

to minimize the error rate? 

Linear Discriminant Function 
denotes +1 

denotes -1 

x1 

x2 

 Infinite number of answers! 
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 How would you classify 

these points using a linear 

discriminant function in order 

to minimize the error rate? 

Linear Discriminant Function 
denotes +1 

denotes -1 

x1 

x2 

 Infinite number of answers! 
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x1 

x2  How would you classify 

these points using a linear 

discriminant function in order 

to minimize the error rate? 

Linear Discriminant Function 
denotes +1 

denotes -1 

 Infinite number of answers! 

 Which one is the best? 
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Large Margin Linear Classifier  

“safe zone” 
 The linear discriminant 

function (classifier) with the 

maximum margin is the best 

 Margin is defined as the 

width that the boundary 

could be increased by before 

hitting a data point 

 Why it is the best? 

 Robust to outliners and thus 

strong generalization ability  

Margin 

x1 

x2 

denotes +1 

denotes -1 
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Large Margin Linear Classifier  

 Given a set of data points: 

 With a scale transformation 

on both w and b, the above 

is equivalent to  

x1 

x2 
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T
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Large Margin Linear Classifier  

 We know that 

 The margin width is: 

x1 

x2 

denotes +1 

denotes -1 

 1
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Support Vectors 
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Large Margin Linear Classifier  

 Formulation:  

x1 

x2 

denotes +1 

denotes -1 

Margin 

x+ 
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2
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Large Margin Linear Classifier  

 Formulation:  

x1 

x2 

denotes +1 

denotes -1 

Margin 

x+ 

x+ 

x- 

n 

21
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2
w
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Large Margin Linear Classifier  

 Formulation:  

x1 

x2 

denotes +1 

denotes -1 

Margin 

x+ 

x+ 

x- 

n ( ) 1T

i iy b w x

21
minimize  

2
w

such that 
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Solving the Optimization Problem  

( ) 1T

i iy b w x

21
minimize  

2
w

s.t. 

Quadratic 

programming  

with linear 

constraints 
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T
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Lagrangian  

Function  

0i 

26 



Solving the Optimization Problem  
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Solving the Optimization Problem  
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Solving the Optimization Problem  

 The solution has the form:  

 ( ) 1 0T

i i iy b   w x

 From KKT condition, we know:  

 Thus, only support vectors have   0i 

1 SV

n

i i i i i i

i i

y y 
 

  w x x

get  from  ( ) 1 0,    

where  is support vector

T
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i
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x
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x2 
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Support Vectors 
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Solving the Optimization Problem  

SV

( ) T T

i i

i

g b b


   x w x x x

 The linear discriminant function is:  

 Notice it relies on a dot product between the test point x 

and the support vectors xi 

 Also keep in mind that solving the optimization problem 

involved computing the dot products xi
Txj between all pairs 

of training points 
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Large Margin Linear Classifier  

 What if data is not linear 

separable? (noisy data, 

outliers, etc.) 

 Slack variables ξi can be 

added to allow mis-

classification of difficult 

or noisy data points 

x1 

x2 

denotes +1 

denotes -1 

1
2
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Large Margin Linear Classifier  

 Formulation: 

( ) 1T

i i iy b   w x

2
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1
minimize  

2

n

i

i

C 
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such that 

0i 

 Parameter C can be viewed as a way to control over-fitting. 
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Large Margin Linear Classifier  

 Formulation: (Lagrangian Dual Problem) 

1 1 1

1
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Non-linear SVMs 
 Datasets that are linearly separable with noise work out great: 

0 x 

0 x 

x2 

0 x 

 But what are we going to do if the dataset is just too hard?  

 How about… mapping data to a higher-dimensional space: 

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt  34 



Non-linear SVMs:  Feature Space 

 General idea:  the original input space can be mapped to 

some higher-dimensional feature space where the 

training set is separable: 

Φ:  x → φ(x) 

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt  35 



Nonlinear SVMs: The Kernel Trick 

 With this mapping, our discriminant function is now: 

SV

( ) ( ) ( ) ( )T T

i i

i

g b b   


   x w x x x

 No need to know this mapping explicitly, because we only use 

the dot product of feature vectors in both the training and test. 

 A kernel function is defined as a function that corresponds to 

a dot product of two feature vectors in some expanded feature 

space: 

( , ) ( ) ( )T

i j i jK  x x x x
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Nonlinear SVMs: The Kernel Trick 

 2-dimensional vectors x=[x1   x2];   

 

     let K(xi,xj)=(1 + xi
Txj)

2
, 

  

     Need to show that K(xi,xj) = φ(xi) 
Tφ(xj): 

   

     K(xi,xj)=(1 + xi
Txj)

2
, 

                           = 1+ xi1
2xj1

2 + 2 xi1xj1
 xi2xj2+ xi2

2xj2
2 + 2xi1xj1 + 2xi2xj2 

       = [1  xi1
2  √2 xi1xi2   xi2

2  √2xi1  √2xi2]
T [1  xj1

2  √2 xj1xj2   xj2
2  √2xj1  √2xj2]  

       = φ(xi) 
Tφ(xj),    where φ(x) =  [1  x1

2  √2 x1x2   x2
2   √2x1  √2x2] 

 

 An example: 

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt  37 



Nonlinear SVMs: The Kernel Trick 

 Linear kernel: 

2

2
( , ) exp( )

2

i j

i jK



 

x x
x x

( , ) T

i j i jK x x x x

( , ) (1 )T p

i j i jK  x x x x

0 1( , ) tanh( )T

i j i jK   x x x x

 Examples of commonly-used kernel functions: 

 Polynomial kernel: 

 Gaussian (Radial-Basis Function (RBF) ) kernel: 

 Sigmoid: 

 In general, functions that satisfy Mercer’s condition can be 

kernel functions. 
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Nonlinear SVM: Optimization 

 Formulation: (Lagrangian Dual Problem) 

1 1 1

1
maximize  ( , )

2

n n n

i i j i j i j

i i j

y y K 
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  x x

such that 
0 i C 

1

0
n

i i

i

y




 The solution of the discriminant function is 

SV

( ) ( , )i i

i

g K b


 x x x

 The optimization technique is the same. 
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Support Vector Machine: Algorithm 

 1. Choose a kernel function 

 

 2. Choose a value for C 

 

 3. Solve the quadratic programming problem 

(many software packages available) 

 

 4. Construct the discriminant function from the 

support vectors  
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Some Issues 

 Choice of kernel 
    - Gaussian or polynomial kernel is default 

    - if ineffective, more elaborate kernels are needed 

    - domain experts can give assistance in formulating appropriate 
similarity measures 

 

 Choice of kernel parameters 
   - e.g. σ in Gaussian kernel 

   - σ is the distance between closest points with different classifications  

   - In the absence of reliable criteria, applications rely on the use of a 
validation set or cross-validation to set such parameters.  

 

 Optimization criterion – Hard margin v.s. Soft margin 

   - a lengthy series of experiments in which various parameters are 
tested  

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt  41 



Summary: Support Vector Machine 

 1. Large Margin Classifier  

 Better generalization ability & less over-fitting 

 

 2. The Kernel Trick 

 Map data points to higher dimensional space in 

order to make them linearly separable. 

 Since only dot product is used, we do not need to 

represent the mapping explicitly. 
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Additional Resource 

 http://www.kernel-machines.org/ 

 http://www.csie.ntu.edu.tw/~cjlin/libsvm/  
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Multiclass classification 

 Reduction techniques 

 Conventional approaches 

 One-against-All 

 K two-class problems 

 Pairwise 

 K(K - 1)/2 two-class problems 

 Decision-Tree-Based 

 DAG (Directed Acyclic Graph) 

 Error-Correcting Output Codes 

44 



Multiclass classification 

 Reduction techniques 

 Conventional approaches 

 apply binary classifier 1 to test example and get 

prediction F1 (0/1) 

 apply binary classifier 2 to test example and get 

prediction F2 (0/1) 

 … 

 apply binary classifier M to test example and get 

prediction FM (0/1) 

 use all M classifications to get the final multiclass 

classification 1..K 

45 
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Feature extraction methods 
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Feature extraction Feature selection 

Problem can be expressed as optimization of parameters of feature extractor                     

  

Supervised methods: objective function is a criterion of separability 

(discriminability) of labeled examples, e.g., linear discriminat analysis (LDA). 

Unsupervised methods: lower dimensional representation which preserves 

important characteristics of input data is sought for, e.g., principal component 

analysis (PCA). 

φ(θ)
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Non-linear SVMs:  Feature Space 

 General idea:  the original input space can be mapped to 

some higher-dimensional feature space where the 

training set is separable: 

Φ:  x → φ(x) 

This slide is courtesy of www.iro.umontreal.ca/~pift6080/documents/papers/svm_tutorial.ppt  48 



Artificial Neural Networks 

Slides from Andrew L. Nelson 

and Torsten Reil 

 



What are Neural Networks? 

 Models of the brain and nervous system 

 Highly parallel 

 Process information much more like the brain than a serial 

computer 

 Learning 

 

 Very simple principles 

 Very complex behaviours 

 

 Applications 

 As powerful problem solvers 

 As biological models 
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Biologically Inspired 

 Electro-chemical signals 

 Threshold output firing   

Axon

Terminal Branches 

of Axon
Dendrites
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The Perceptron 

 Binary classifier functions 

 Threshold activation function 

Axon

Terminal Branches 

of Axon
Dendrites

S

x1

x2

w1

w2

wn

xn

x3 w3
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The Perceptron: Threshold Activation 

Function 
 Binary classifier functions 

 Threshold activation function 

 

Step Threshold
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Nonlinear Activation Functions 

 Sigmoid Neuron unit function 

uhid
e

uy



1

1
)(

Sigmoid
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Linear Activation functions 

 Output is scaled sum of inputs 

n

N

n

n xwuy 



1

Linear



ANNs – The basics 

 ANNs incorporate the two fundamental 

components of biological neural nets: 

 

1.  Neurones (nodes) 

2.  Synapses (weights) 
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Feed-forward nets 

 Information flow is unidirectional 

 Data is presented to Input layer 

 Passed on to Hidden Layer 

 Passed on to Output layer 

 

 Information is distributed 

 

 Information processing is parallel 

 

Internal representation (interpretation) of data 

57 



 Feeding data through the net: 

 

 

 

 

 

 

(1  0.25) + (0.5  (-1.5)) = 0.25 + (-0.75)   =  

- 0.5  

0.3775
1

1
5.0


 e
Squashing: 
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 Data is presented to the network in the form of 

activations in the input layer 

 

 Examples 

 Pixel intensity (for pictures) 

 Molecule concentrations (for artificial nose) 

 Share prices (for stock market prediction) 

 

 Data usually requires preprocessing 

 Analogous to senses in biology 

 

 How to represent more abstract data, e.g. a name? 

 Choose a pattern, e.g. 

 0-0-1 for “Chris” 

 0-1-0 for “Becky” 
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 Weight settings determine the behaviour of 

a network 

 

  How can we find the right weights? 
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Training the Network - Learning 
 

 Backpropagation 

 Requires training set (input / output pairs) 

 Starts with small random weights 

 Error is used to adjust weights (supervised learning) 

 Gradient descent on error landscape 
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Training Data Set 

Adjust weights (w) to learn a given 

target function:   y = f(x) 

Given a set of training data X→Y 

x y
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Training Weights: Error Back-Propagation (BP) 

 Weight update formula:  
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Error Back-Propagation (BP) 

Training error term: e 
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BP Formulation 
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BP Formulation 
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BP Formulation 
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BP Formulation 
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BP Formulation 
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BP Formulation 
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BP Formulation 
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BP Formulation 
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Example: The XOR problem:  

 Single hidden layer: 3 Sigmoid 

neurons 

 2 inputs, 1 output  

Desired I/O table (XOR): 

x1 x2 y 

Example 1 0 0 0 

Example 2 0 1 1 

Example 3 1 0 1 

Example 4 1 1 0 
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Example: The XOR problem:  

 Training error over epoch 
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Example: The XOR problem:  

initial_weights = 

0.0654    0.2017    0.0769    0.1782    0.0243    0.0806    

0.0174   0.1270    0.0599    0.1184    0.1335    0.0737    

0.1511 

 

final_weights = 

4.6970   -4.6585    2.0932    5.5168   -5.7073   -3.2338   

-0.1886   1.6164   -0.1929   -6.8066    6.8477   -1.6886    

4.1531 
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Example: The XOR problem:  

Mapping produced by the trained neural net: 

x1 x2 y 

Example 1 0 0     0.0824 

Example 2 0 1     0.9095 

Example 3 1 0     0.9470 

Example 4 1 1     0.0464 
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Example: Overtraining  

 Single hidden layer: 10 

Sigmoid neurons 

 1 input, 1 output 



Applications of Feed-forward nets 

 Pattern recognition 

 Character recognition 

 Face Recognition 

 

 Sonar mine/rock recognition (Gorman & Sejnowksi, 1988) 

 Navigation of a car (Pomerleau, 1989) 

 Stock-market prediction 

 Pronunciation (NETtalk) 
 (Sejnowksi & Rosenberg, 1987) 
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