Computer Vision

Pattern Recognition Concepts — Part |l

Luis F. Teixeira
MAP-i 2012/13

Last lecture

 The Bayes classifier yields the optimal decision
rule if the prior and class-conditional
distributions are known.

* This is unlikely for most applications, so we can:

— attempt to estimate p(x|w;) from data, by means of
density estimation techniques
* Naive Bayes and nearest-neighbors classifiers

— assume p(x | w;) follows a particular distribution (i.e.
Normal) and estimate its parameters

e guadratic classifiers

— ignore the underlying distribution, and attempt to
separate the data geometrically

e discriminative classifiers

k-Nearest neighbour classifier

* Given the training data D = {x,,...,x,} as a set of n
labeled examples, the nearest neighbour classifier
assigns a test point x the label associated with its
closest neighbour (or & neighbours) in D.

* Closeness is defined using a distance function.

Distance functions

e A general class of metrics for d-dimensional patterns
is the Minkowski metric, also known as the L,norm

d 1/p
Lp(X9Y) = (E‘xi - yi‘p)
i=1

* The Euclidean distance is the L, norm

d 1/2
L,(x,y)= (E\xi —yi\z)
i=1

 The Manhattan or city block distance is the L1 norm

d
LI(X,Y) = E‘xi _yi‘
i=1

Distance functions

* The Mahalanobis distance is based on the
covariance of each feature with the class examples.

Dy x = = (xor)

— Based on the assumption that distances in the direction of
high variance are less important

— Highly dependent on a good estimate of covariance

1-Nearest neighbour classifier

Assign label of nearest training data point to each test data
point

Novel test example

Black = negative

Red = posiﬁve Closest to a

positive example
from the training
set, so classify it as
> positive.

from Duda et al.

Voronoi partitioning of feature space
for 2-category 2D data

k-Nearest neighbour classifier

* For a new point, find the & closest points from training data
e Labels of the &k points “vote” to classify

Black = negative
Red = positive

If the query lands here, the 5

NN consist of 3 negatives and
2 positives, so we classify it as
negative.

k-Nearest neighbour classifier

The main advantage of kNN is that it leads to a very simple
approximation of the (optimal) Bayes classifier

True density contours kNN density estimate contours

KNN as a classifier

 Advantages:

— Simple to implement

— Flexible to feature / distance choices

— Naturally handles multi-class cases

— Can do well in practice with enough representative data
* Disadvantages:

— Large search problem to find nearest neighbors = Highly
susceptible to the curse of dimensionality

— Storage of data
— Must have a meaningful distance function

Dimensionality reduction

* The curse of dimensionality

— The number of examples needed to accurately train a

classifier grows exponentially with the dimensionality of
the model

— In theory, information provided by additional features
should help improve the model’s accuracy

— In reality, however, additional features increase the risk of
overfitting, i.e., memorizing noise in the data rather than
its underlying structure

— For a given sample size, there is a maximum number of
features above which the classifier’s performance
degrades rather than improves

Dimensionality reduction

* The curse of dimensionality can be limited by:
— incorporating prior knowledge (e.g., parametric models)

— enforcing smoothness in the target function (e.g.,
regularization)

— reducing the dimensionality

* creating a subset of new features by combinations of the existing
features — feature extraction

* choosing a subset of all the features — feature selection

Dimensionality reduction

* In feature extraction methods, two types of criteria
are commonly used:

— Signal representation: The goal of feature selection is to
accurately represent the samples in a lower-dimensional
space (e.g. Principal Components Analysis, or PCA)

— Classification: The goal of feature selection is to enhance
the class-discriminatory information in the lower-
dimensional space (e.g. Fisher’s Linear Discriminants
Analysis, or LDA)

Discriminative classifiers

* Decision boundary-based classifiers:
— Decision trees
— Neural networks

— Support vector machines

Discriminative vs Generative

Discriminative models only

define a decision boundary
Generative models

estimate the distributions

Discriminative vs Generative

e Discriminative models differ from generative
models in that they do not allow one to generate
samples from the joint distribution of x and y.

* However, for tasks such as classification and
regression that do not require the joint
distribution, discriminative models generally yield
superior performance.

* On the other hand, generative models are
typically more flexible than discriminative
models in expressing dependencies in complex

learning tasks.

Decision trees

* Decision trees are hierarchical decision
systems in which conditions are sequentially
tested until a class is accepted

 The feature space is split into unique regions
corresponding to the classes, in a sequential
manner

* The searching of the region to which the
feature vector will be assigned to is achieved
via a sequence of decisions along a path of
nodes

Decision trees

root @
green yellow red
Cize2d Ghaped CGized
big :'i small round thin medium small
Watermelon Ap]flp Grape CCizer> Banana Apple CasteD
big small sweel SOUr
Grapefruit Lemon Cherry Grape

level ()

level |

level 2

level 3

Decision trees classify a pattern through a sequence of

questions, in which the next question depends on the

answer to the current question

Decision trees

* The most popular schemes among decision trees are
those that split the space into hyper-rectangles with
sides parallel to the axes

 The sequence of decisions is applied to individual
features, in the form of “is the feature x, < a.?”

X1>0.257

0.75 -

x2 0.50 Cs I

0.25 0.75
X1

Artificial neural networks

* A neural network is a set of connected input/
output units where each connection has a
weight associated with it

* During the learning phase, the network learns
by adjusting the weights so as to be able to
predict the correct class output of the input
signals

Artificial neural networks

 Examples of ANN:

— Perceptron

— Multilayer Perceptron (MLP)

— Radial Basis Function (RBF)

— Self-Organizing Map (SOM, or Kohonen map)
* Topologies:

— Feed forward

— Recurrent

Perceptron

* Defines a (hyper)plane that linearly separates the
feature space

* The inputs are real values and the output +1,-1

e Activation functions: step, linear, logistic sigmoid,
Gaussian

y = sign(v)

|

@ V=W, + WX, + W,X,
w

’1 X ’xz

W, + wx, + w,x, =0

Multilayer perceptron

To handle more complex
problems (than linearly
separable ones) we need
multiple layers.

Each layer receives its inputs
from the previous layer and

forwards its outputs to the
next layer

The result is the combination

of linear boundaries which
allow the separation of
complex data

Weights are obtained through

the back propagation
algorithm

Output layer

2nd hidden
layer

1st hidden
layer

Input data

Non-linearly separable problems

Structure Types of Exclusive-OR Classes with Most General
Decision Regions Problem Meshed regions | Region Shapes

K Bounded By
Hyperplane

Two-Layer Convex Open

Or
Closed Regions

Three-Layer Abitrary

(Complexity
Limited by No.
of Nodes)

L g

© JOF © LOICRC)

@ @) Lot

n Dr. Andrew Hunter

RBF networks

* RBF networks approximate functions using (radial)
basis functions as the building blocks. Generally, the
hidden unit function is Gaussian and the output
Layer is linear

Inputs

MLP vs RBF

e Classification

— MLPs separate classes via
hyperplanes

— RBFs separate classes via
hyperspheres X, x X x MLP

* Learning °o°
— MLPs use distributed learning

— RBFs use localized learning X

— RBFs train faster 1

* Structure

X S
— MLPs have one or more hidden 2

layers
— RBFs have only one layer

— RBFs require more hidden neurons
=> curse of dimensionality

v

ANN as a classifier

* Advantages
— High tolerance to noisy data
— Ability to classify untrained patterns
— Well-suited for continuous-valued inputs and outputs
— Successful on a wide array of real-world data
— Algorithms are inherently parallel

* Disadvantages
— Long training time
— Requires a number of parameters typically best determined
empirically, e.g., the network topology or "structure.”

— Poor interpretability: Difficult to interpret the symbolic meaning
behind the learned weights and of "hidden units" in the
network

Support Vector Machine

e Discriminant function is a hyperplane (line in 2D)
in feature space (similar to the Perceptron)

* |n a nutshell:

— Map the data to a predetermined very high-
dimensional space via a kernel function

— Find the hyperplane that maximizes the margin
between the two classes

— |f data are not separable find the hyperplane that
maximizes the margin and minimizes the (a weighted
average of the) misclassifications

Linear classifiers

Linear functions in R?

.

Let

')

. y

ax+cy+b=0

Linear functions in R?

')

. y

ax+cy+b=0

1

w x+b=0

Linear functions in R?

W X+b=

Let

')

. y

ax+cy+b=0

1

w x+b=0

Linear functions in R?

. -
Let W=| | X=
N V.

ax+cy+b=0

\ N i
w x+b=0

B ‘axo +CY, + b‘ distance from
- \/ 2 . 2 point to line
a” +c

Linear functions in R?

. -
Let W=| | X=
N V.

ax+cy+b=0

\ N i
w x+b=0

‘axo T "'b‘ W X+b h_ distance from
Ja2+2 | point to line

Linear classifiers

Find linear function to separate positive and negative examples

@
@ ..
® X, positive: X, wW+b=0
® X, negative: X, w+b<0
@
@
© o e o
O © \
O ® ®
O
Which line
© is best?

Support Vector Machines

Discriminative classifier
based on optimal
separating line (for 2D
case)

Maximize the margin
between the positive
and negative training
examples

Support Vector Machines

We want the line that maximizes the margin.

X, positive (y, =1): X, W+b=1

x; negative(y, =-1): X, w+b=-1

For support, vectors, X, W+b = =1

Support vectors

Support Vector Machines

4 Lé/— We want the line that maximizes the margin.

X, positive (y, =1): X, W+b=1
x; negative(y, =-1): X, w+b=-1

For support, vectors, X, W+b = =1

@ Distance between point | X, W+b|
and line: | w |

For support vectors:

wx+b +1

Support vectors © \ Margin HWH = HWH M=

Wl wl

Support Vector Machines

Support vectors

We want the line that maximizes the margin.

X, positive (y, =1): X, W+b=1

X, negative(y, =-1): Xx,w+b=-1

For support, vectors, X, W+b = =1

Distance between point | X, W+D|
and line: | w |

Therefore, the marginis 2/ | |[w] |

Finding the maximum margin line

1. Maximize margin 2/||w||
2. Correctly classify all training data points:

X; positive (y, =1): X, W+b=1

x; negative(y, =-1): X, -w+b=-1

Quadratic optimization problem:

.. 1
Minimize EWTW

Subject to y(w-x+b) > 1

Finding the maximum margin line

e Solution: W= Eiaz’yixi

/

learned support
weight vector

Finding the maximum margin line

* Solution: W= a,yx,
b=y —w-x. (foranysupportvector)
W-x+b=2ial.yl.x.-x +b

e Classification function:
f(X) = Slgn (W X+ b) If f(x) < O, classify as

negative,

— Slgn(zlaxzx + b) if f(x) > 0, classify as

............... : positive

Questions

 What if the features are not 2D?
 What if the data is not linearly separable?

 What if we have more than just two
categories?

Questions

e What if the features are not 2D?

— Generalizes to d-dimensions — replace line with
“hyperplane”

 What if the data is not linearly separable?

 What if we have more than just two
categories?

Questions

 What if the features are not 2d?
 What if the data is not linearly separable?

 What if we have more than just two
categories?

Soft-margin SVMs

Introduce slack variable and allow some instances to
fall within the margin, but penalize them

Constraint becomes: y(w x,+b)21-¢&, Vx,
& 20

Objective function penalizes for misclassified

instances within the margin

min [l + ¢,

C trades-off margin width and classifications
As C>oo, we get closer to the hard-margin solution

Soft-margin vs Hard-margin SVMs

e Soft-Margin always has a solution

e Soft-Margin is more robust to outliers
— Smoother surfaces (in the non-linear case)

 Hard-Margin does not require to guess the cost
parameter (requires no parameters at all)

Var, T Var, |

Var, W-X+b=0 Var,

w-x+b=0

Non-linear SVMs

e Datasets that are linearly separable with some noise
work out great: -~ o .@ | @._.

X

 But what are we going to do if the dataset is just too

hard? —o o 0o——o00—00o—0
0 X

* How about... mapping data to a higher-dimensional
space: $ X7

Non-linear SVMs

* General idea: the original input space can be
mapped to some higher-dimensional feature space
where the training set is separable:

. o
e |l e L O ®
® T e PD: x— X o

........

o [® -
.)
3 o
. “'
@ o ’
. .,
) e - °
. ®
"""" ® o

The “Kernel Trick”

* The linear classifier relies on dot product between vectors
K(xi,X)=x;"x

* |If every data point is mapped into high-dimensional space via
some transformation @: x — @(X), the dot product becomes:

K(Xi,X;)= @(x;) "o(x;)

* A kernel function is a similarity function that corresponds to an
inner product in some expanded feature space.

Non-linear SVMs

e The kernel trick: instead of explicitly
computing the lifting transformation ¢(x),
define a kernel function K such that

K(x;,x;) = o(X;) - (X))

e This gives a nonlinear decision boundary in
the original feature space:

Y @y K(x,,X) +b

Examples of kernel functions

. Linear:

T
K(x;,x;)=x; x,

. Gaussian RBF:

2
%, -)|

)

K(x.,x.)=exp(-
(x;,x ;) = exp(.

. Histogram intersection:

K(xiaxj) = Zmin(xi (k)axj (k))

Questions

 What if the features are not 2D?
 What if the data is not linearly separable?

* What if we have more than just two
categories?

Multi-class SVMs

* Achieve multi-class classifier by combining a number of
binary classifiers

* One vs. all
— Training: learn an SVM for each class vs. the rest

— Testing: apply each SVM to test example and assign
to it the class of the SVM that returns the highest

decision value
e One vs. one
— Training: learn an SVM for each pair of classes

— Testing: each learned SVM “votes” for a class to
assign to the test example

SVM iIssues

* Choice of kernel
— Gaussian or polynomial kernel is default
— if ineffective, more elaborate kernels are needed
— domain experts can give assistance in formulating
appropriate similarity measures
* Choice of kernel parameters

— e.g. o in Gaussian kernel, is the distance between closest
points with different classifications

— In the absence of reliable criteria, rely on the use of a
validation set or cross-validation to set such parameters

e Optimization criterion — Hard margin v.s. Soft margin
— series of experiments in which parameters are tested

SVM as a classifier

e Advantages
— Many SVM packages available
— Kernel-based framework is very powerful, flexible
— Often a sparse set of support vectors — compact at test
time
— Works very well in practice, even with very small
training sample sizes

e Disadvantages

— No “direct” multi-class SVM, must combine two-class
SVMs

— Can be tricky to select best kernel function for a
problem

— Computation, memory

* During training time, must compute matrix of kernel values
for every pair of examples

* Learning can take a very long time for large-scale problems

Training - general strategy

We try to simulate the real world scenario.

Test data is our future data.

Validation set can be our test set - we use it to select our
model.

The whole aim is to estimate the models’ true error on
the sample data we have.

training set validation set test set

Validation set method

 Randomly split some
portion of your data. Leave
it aside as the validation set
* The remaining data is the

training data

Validation set method

 Randomly split some
portion of your data. Leave
it aside as the validation set
* The remaining data is the
training data
; * Learn a model from the
training set

Validation set method

 Randomly split some
portion of your data. Leave
it aside as the validation set

* The remaining data is the
training data

; e Learn a model from the
training set
. * Estimate your future

performance with the test
data

Test set method

* |tis simple, however
— We waste some portion of the data

— If we do not have much data, we may be lucky or
unlucky with our test data

 With cross-validation we reuse the data

LOOCYV (Leave-one-out Cross Validation)

 Let us say we have N data
points and k as the index for
. data points, k=1..N
* Let(x,y,) be the k*" record
. * Temporarily remove (x,,y,)
T . from the dataset
* Train on the remaining N-1
datapoints
y ‘ * Test the error on (x,,y,)
X —» * Do this for each k=1..N and
report the mean error.

The single test data

LOOCYV (Leave-one-out Cross Validation)

! !
! f
! !

b

b

¥ —»

¥ —»

¥ —»

* Repeat the
validation N
times, for each
of the N data
points.

* The validation
data is changing
each time.

K-fold cross validation

rl'est \[Trainon (k -1) splits \

/'
I

k-fold

. I

In 3 fold cross validation, there are 3 runs.
In 5 fold cross validation, there are 5 runs.
In 10 fold cross validation, there are 10 runs.

the error is averaged over all runs

References

Kristen Grauman, Discriminative classifiers for image
recognition, http://www.cs.utexas.edu/~grauman/
courses/spring2011/slides/lecture22_classifiers.pdf

Jaime S. Cardoso, Support Vector Machines, http://
www.dcc.fc.up.pt/~mcoimbra//lectures/MAPI_1112/
CV_1112 6 SupportVectorMachines.pdf

Andrew Moore, Support Vector Machines Tutorial,
http://www.autonlab.org/tutorials/svm.html

Christopher M. Bishop, Pattern recognition and Machine
learning, Springer, 2006.

Richard O. Duda, Peter E. Hart, David G. Stork, Pattern
Classification, John Wiley & Sons, 2001

