Computer Vision

Pattern Recognition Concepts – Part II

Luis F. Teixeira

MAP-i 2012/13

Last lecture

- The Bayes classifier yields the optimal decision rule if the prior and class-conditional distributions are known.
- This is unlikely for most applications, so we can:
 - attempt to estimate $p(x|\omega_i)$ from data, by means of density estimation techniques
 - Naïve Bayes and nearest-neighbors classifiers
 - assume $p(x | \omega_i)$ follows a particular distribution (i.e. Normal) and estimate its parameters
 - quadratic classifiers
 - ignore the underlying distribution, and attempt to separate the data geometrically
 - discriminative classifiers

k-Nearest neighbour classifier

• Given the training data $D = \{x_1, ..., x_n\}$ as a set of n labeled examples, the **nearest neighbour classifier** assigns a test point x the label associated with its closest neighbour (or k neighbours) in D.

Closeness is defined using a distance function.

Distance functions

• A general class of metrics for d-dimensional patterns is the **Minkowski metric**, also known as the L_p norm

$$L_p(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^d |x_i - y_i|^p\right)^{1/p}$$

• The **Euclidean distance** is the L_2 norm

$$L_2(\mathbf{x}, \mathbf{y}) = \left(\sum_{i=1}^d |x_i - y_i|^2\right)^{1/2}$$

The Manhattan or city block distance is the L1 norm

$$L_1(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^d |x_i - y_i|$$

Distance functions

 The Mahalanobis distance is based on the covariance of each feature with the class examples.

$$D_{M}(\mathbf{x}) = \sqrt{\left(\mathbf{x} - \mu\right)^{T} \Sigma^{-1} \left(\mathbf{x} - \mu\right)}$$

- Based on the assumption that distances in the direction of high variance are less important
- Highly dependent on a good estimate of covariance

1-Nearest neighbour classifier

Assign label of nearest training data point to each test data

point

Black = negative Red = positive

Novel test example

Closest to a positive example from the training set, so classify it as positive.

Voronoi partitioning of feature space for 2-category 2D data

k-Nearest neighbour classifier

- For a new point, find the k closest points from training data
- Labels of the k points "vote" to classify

If the query lands here, the 5 NN consist of 3 negatives and 2 positives, so we classify it as negative.

k-Nearest neighbour classifier

 The main advantage of kNN is that it leads to a very simple approximation of the (optimal) Bayes classifier

kNN as a classifier

Advantages:

- Simple to implement
- Flexible to feature / distance choices
- Naturally handles multi-class cases
- Can do well in practice with enough representative data

Disadvantages:

- Large search problem to find nearest neighbors → Highly susceptible to the curse of dimensionality
- Storage of data
- Must have a meaningful distance function

Dimensionality reduction

The curse of dimensionality

- The number of examples needed to accurately train a classifier grows exponentially with the dimensionality of the model
- In theory, information provided by additional features should help improve the model's accuracy
- In reality, however, additional features increase the risk of overfitting, i.e., memorizing noise in the data rather than its underlying structure
- For a given sample size, there is a maximum number of features above which the classifier's performance degrades rather than improves

Dimensionality reduction

- The curse of dimensionality can be limited by:
 - incorporating prior knowledge (e.g., parametric models)
 - enforcing smoothness in the target function (e.g., regularization)
 - reducing the dimensionality
 - creating a subset of new features by combinations of the existing features – feature extraction
 - choosing a subset of all the features feature selection

Dimensionality reduction

- In feature extraction methods, two types of criteria are commonly used:
 - Signal representation: The goal of feature selection is to accurately represent the samples in a lower-dimensional space (e.g. **Principal Components Analysis**, or PCA)
 - Classification: The goal of feature selection is to enhance the class-discriminatory information in the lowerdimensional space (e.g. Fisher's Linear Discriminants Analysis, or LDA)

Discriminative classifiers

- Decision boundary-based classifiers:
 - Decision trees
 - Neural networks
 - Support vector machines

Discriminative vs Generative

Discriminative vs Generative

- Discriminative models differ from generative models in that they do not allow one to generate samples from the joint distribution of x and y.
- However, for tasks such as classification and regression that do not require the joint distribution, discriminative models generally yield superior performance.
- On the other hand, generative models are typically more flexible than discriminative models in expressing dependencies in complex learning tasks.

Decision trees

- Decision trees are hierarchical decision systems in which conditions are sequentially tested until a class is accepted
- The feature space is split into unique regions corresponding to the classes, in a sequential manner
- The searching of the region to which the feature vector will be assigned to is achieved via a sequence of decisions along a path of nodes

Decision trees

Decision trees classify a pattern through a **sequence** of questions, in which the next question depends on the answer to the current question

Decision trees

- The most popular schemes among decision trees are those that split the space into hyper-rectangles with sides parallel to the axes
- The sequence of decisions is applied to individual features, in the form of "is the feature $x_k < \alpha$?"

Artificial neural networks

- A neural network is a set of connected input/ output units where each connection has a weight associated with it
- During the learning phase, the network learns by adjusting the weights so as to be able to predict the correct class output of the input signals

Artificial neural networks

- Examples of ANN:
 - Perceptron
 - Multilayer Perceptron (MLP)
 - Radial Basis Function (RBF)
 - Self-Organizing Map (SOM, or Kohonen map)
- Topologies:
 - Feed forward
 - Recurrent

Perceptron

- Defines a (hyper)plane that linearly separates the feature space
- The inputs are real values and the output +1,-1
- Activation functions: step, linear, logistic sigmoid, Gaussian

Multilayer perceptron

- To handle more complex problems (than linearly separable ones) we need multiple layers.
- Each layer receives its inputs from the previous layer and forwards its outputs to the next layer
- The result is the combination of linear boundaries which allow the separation of complex data
- Weights are obtained through the back propagation algorithm

Input data

Non-linearly separable problems

Structure	Types of Decision Regions	Exclusive-OR Problem	Classes with Meshed regions	Most General Region Shapes
Single-Layer	Half Plane Bounded By Hyperplane	A B B A	B	
Two-Layer	Convex Open Or Closed Regions	A B B A	B	
Three-Layer	Abitrary (Complexity Limited by No. of Nodes)	B A	Neural Networks – An Introduction	n Dr. Andrew Hunter

RBF networks

 RBF networks approximate functions using (radial) basis functions as the building blocks. Generally, the hidden unit function is Gaussian and the output Layer is linear

MLP vs RBF

Classification

- MLPs separate classes via hyperplanes
- RBFs separate classes via hyperspheres

Learning

- MLPs use distributed learning
- RBFs use localized learning
- RBFs train faster

Structure

- MLPs have one or more hidden layers
- RBFs have only one layer
- RBFs require more hidden neurons=> curse of dimensionality

ANN as a classifier

Advantages

- High tolerance to noisy data
- Ability to classify untrained patterns
- Well-suited for continuous-valued inputs and outputs
- Successful on a wide array of real-world data
- Algorithms are inherently parallel

Disadvantages

- Long training time
- Requires a number of parameters typically best determined empirically, e.g., the network topology or `structure."
- Poor interpretability: Difficult to interpret the symbolic meaning behind the learned weights and of ``hidden units" in the network

Support Vector Machine

- Discriminant function is a hyperplane (line in 2D) in feature space (similar to the Perceptron)
- In a nutshell:
 - Map the data to a predetermined very highdimensional space via a kernel function
 - Find the hyperplane that maximizes the margin between the two classes
 - If data are not separable find the hyperplane that maximizes the margin and minimizes the (a weighted average of the) misclassifications

Linear classifiers

Let
$$\mathbf{W} = \begin{bmatrix} a \\ c \end{bmatrix}$$
 $\mathbf{X} = \begin{bmatrix} x \\ y \end{bmatrix}$

$$ax + cy + b = 0$$

$$D = \frac{|ax_0 + cy_0 + b|}{\sqrt{a^2 + c^2}}$$

distance from point to line

$$D = \frac{\left|ax_0 + cy_0 + b\right|}{\sqrt{a^2 + c^2}} = \frac{\mathbf{w}^{\mathrm{T}}\mathbf{x} + b}{\|\mathbf{w}\|} \quad \text{distance from point to line}$$

Linear classifiers

Find linear function to separate positive and negative examples

Support Vector Machines

Discriminative classifier based on *optimal* separating line (for 2D case)

Maximize the *margin* between the positive and negative training examples

Support Vector Machines

We want the line that maximizes the margin.

$$\mathbf{x}_i$$
 positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$

$$\mathbf{x}_i \text{ negative}(y_i = -1): \quad \mathbf{x}_i \cdot \mathbf{w} + b \le -1$$

For support, vectors,
$$\mathbf{X}_i \cdot \mathbf{W} + b = \pm 1$$

Support Vector Machines

We want the line that maximizes the margin.

$$\mathbf{x}_i$$
 positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$

$$\mathbf{x}_i \text{ negative}(y_i = -1): \quad \mathbf{x}_i \cdot \mathbf{w} + b \le -1$$

For support, vectors,
$$\mathbf{X}_i \cdot \mathbf{W} + b = \pm 1$$

Distance between point and line:

$$\frac{|\mathbf{x}_i \cdot \mathbf{w} + b|}{\|\mathbf{w}\|}$$

For support vectors:

$$\frac{\mathbf{w}^T \mathbf{x} + b}{\|\mathbf{w}\|} = \frac{\pm 1}{\|\mathbf{w}\|} \quad M = \left| \frac{1}{\|\mathbf{w}\|} - \frac{-1}{\|\mathbf{w}\|} \right| = \frac{2}{\|\mathbf{w}\|}$$

Support Vector Machines

We want the line that maximizes the margin.

$$\mathbf{x}_i$$
 positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$

$$\mathbf{x}_i \text{ negative}(y_i = -1): \quad \mathbf{x}_i \cdot \mathbf{w} + b \le -1$$

For support, vectors,
$$\mathbf{X}_i \cdot \mathbf{W} + b = \pm 1$$

Distance between point and line:

$$\frac{|\mathbf{x}_i \cdot \mathbf{w} + b|}{\|\mathbf{w}\|}$$

Therefore, the margin is 2/||w||

Finding the maximum margin line

- 1. Maximize margin $2/||\mathbf{w}||$
- 2. Correctly classify all training data points:

$$\mathbf{x}_i$$
 positive $(y_i = 1)$: $\mathbf{x}_i \cdot \mathbf{w} + b \ge 1$

$$\mathbf{x}_i \text{ negative}(y_i = -1): \quad \mathbf{x}_i \cdot \mathbf{w} + b \le -1$$

Quadratic optimization problem:

Minimize
$$\frac{1}{2}\mathbf{w}^T\mathbf{w}$$

Subject to
$$y_i(\mathbf{w} \cdot \mathbf{x}_i + b) \ge 1$$

Finding the maximum margin line

• Solution: $\mathbf{W} = \sum_{i} \alpha_{i} y_{i} \mathbf{X}_{i}$

learned weight

support vector

Finding the maximum margin line

• Solution:
$$\mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$$

$$b = y_{i} - \mathbf{w} \cdot \mathbf{x}_{i} \text{ (for any support vector)}$$

$$\mathbf{w} \cdot \mathbf{x} + b = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \cdot \mathbf{x} + b$$

Classification function:

$$f(x) = sign(\mathbf{w} \cdot \mathbf{x} + \mathbf{b})$$

$$= sign(\sum_{i} \alpha |\mathbf{x}_{i} \cdot \mathbf{x}| + \mathbf{b})$$

- What if the features are not 2D?
- What if the data is not linearly separable?
- What if we have more than just two categories?

- What if the features are not 2D?
 - Generalizes to d-dimensions replace line with "hyperplane"
- What if the data is not linearly separable?
- What if we have more than just two categories?

- What if the features are not 2d?
- What if the data is not linearly separable?
- What if we have more than just two categories?

Soft-margin SVMs

- Introduce slack variable and allow some instances to fall within the margin, but penalize them
- Constraint becomes: $y_i(w \cdot x_i + b) \ge 1 \xi_i, \ \forall x_i \le 0$
- Objective function penalizes for misclassified instances within the margin

$$\min \frac{1}{2} \|w\|^2 + C \sum_i \xi_i$$

- C trades-off margin width and classifications
- As $C \rightarrow \infty$, we get closer to the hard-margin solution

Soft-margin vs Hard-margin SVMs

- Soft-Margin always has a solution
- Soft-Margin is more robust to outliers
 - Smoother surfaces (in the non-linear case)
- Hard-Margin does not require to guess the cost parameter (requires no parameters at all)

Non-linear SVMs

Datasets that are linearly separable with some noise work out great:

• But what are we going to do if the dataset is just too hard?

• How about... mapping data to a higher-dimensional space: \uparrow^{x^2}

Non-linear SVMs

 General idea: the original input space can be mapped to some higher-dimensional feature space where the training set is separable:

The "Kernel Trick"

- The linear classifier relies on dot product between vectors $K(x_i,x_j)=x_i^Tx_j$
- If every data point is mapped into high-dimensional space via some transformation $\Phi: x \to \phi(x)$, the dot product becomes: $K(x_i,x_i)=\phi(x_i)^T\phi(x_i)$

 A kernel function is a similarity function that corresponds to an inner product in some expanded feature space.

Non-linear SVMs

• The kernel trick: instead of explicitly computing the lifting transformation $\varphi(\mathbf{x})$, define a kernel function K such that

$$K(\mathbf{x}_i, \mathbf{x}_j) = \boldsymbol{\varphi}(\mathbf{x}_i) \cdot \boldsymbol{\varphi}(\mathbf{x}_j)$$

 This gives a nonlinear decision boundary in the original feature space:

$$\sum_{i} \alpha_{i} y_{i} K(\mathbf{x}_{i}, \mathbf{x}) + b$$

Examples of kernel functions

Linear:

$$K(x_i, x_j) = x_i^T x_j$$

Gaussian RBF:

$$K(x_i, x_j) = \exp(-\frac{\|x_i - x_j\|^2}{2\sigma^2})$$

Histogram intersection:

$$K(x_i, x_j) = \sum_{k} \min(x_i(k), x_j(k))$$

- What if the features are not 2D?
- What if the data is not linearly separable?
- What if we have more than just two categories?

Multi-class SVMs

 Achieve multi-class classifier by combining a number of binary classifiers

One vs. all

- Training: learn an SVM for each class vs. the rest
- Testing: apply each SVM to test example and assign to it the class of the SVM that returns the highest decision value

One vs. one

- Training: learn an SVM for each pair of classes
- Testing: each learned SVM "votes" for a class to assign to the test example

SVM issues

- Choice of kernel
 - Gaussian or polynomial kernel is default
 - if ineffective, more elaborate kernels are needed
 - domain experts can give assistance in formulating appropriate similarity measures
- Choice of kernel parameters
 - e.g. σ in Gaussian kernel, is the distance between closest points with different classifications
 - In the absence of reliable criteria, rely on the use of a validation set or cross-validation to set such parameters
- Optimization criterion Hard margin v.s. Soft margin
 - series of experiments in which parameters are tested

SVM as a classifier

Advantages

- Many SVM packages available
- Kernel-based framework is very powerful, flexible
- Often a sparse set of support vectors compact at test time
- Works very well in practice, even with very small training sample sizes

Disadvantages

- No "direct" multi-class SVM, must combine two-class SVMs
- Can be tricky to select best kernel function for a problem
- Computation, memory
 - During training time, must compute matrix of kernel values for every pair of examples
 - Learning can take a very long time for large-scale problems

Training - general strategy

- We try to simulate the real world scenario.
- Test data is our future data.
- Validation set can be our test set we use it to select our model.
- The whole aim is to estimate the models' true error on the sample data we have.

Validation set method

- Randomly split some portion of your data. Leave it aside as the validation set
- The remaining data is the training data

Validation set method

- Randomly split some portion of your data. Leave it aside as the validation set
- The remaining data is the training data
- Learn a model from the training set

Validation set method

- Randomly split some portion of your data. Leave it aside as the validation set
- The remaining data is the training data
- Learn a model from the training set
- Estimate your future
 performance with the test
 data

Test set method

- It is simple, however
 - We waste some portion of the data
 - If we do not have much data, we may be lucky or unlucky with our test data

With cross-validation we reuse the data

LOOCV (Leave-one-out Cross Validation)

- Let us say we have N data points and k as the index for data points, k=1..N
- Let (x_k, y_k) be the k^{th} record
- Temporarily remove (x_k, y_k) from the dataset
- Train on the remaining N-1 datapoints
- Test the error on (x_k, y_k)
- Do this for each k=1..N and report the mean error.

LOOCV (Leave-one-out Cross Validation)

- Repeat the validation N times, for each of the N data points.
- The validation data is changing each time.

K-fold cross validation

In 3 fold cross validation, there are 3 runs.

In 5 fold cross validation, there are 5 runs.

In 10 fold cross validation, there are 10 runs.

the error is averaged over all runs

References

- Kristen Grauman, Discriminative classifiers for image recognition, http://www.cs.utexas.edu/~grauman/ courses/spring2011/slides/lecture22_classifiers.pdf
- Jaime S. Cardoso, Support Vector Machines, http:// www.dcc.fc.up.pt/~mcoimbra//lectures/MAPI_1112/ CV_1112_6_SupportVectorMachines.pdf
- Andrew Moore, Support Vector Machines Tutorial, http://www.autonlab.org/tutorials/svm.html
- Christopher M. Bishop, Pattern recognition and Machine learning, Springer, 2006.
- Richard O. Duda, Peter E. Hart, David G. Stork, Pattern Classification, John Wiley & Sons, 2001