Computer Vision - T2.2b Segmentation by Fitting

MAP-I Doctoral Programme

Miguel Tavares Coimbra

Outline

- The Hough Transform
- Fitting Lines
- Fitting Curves
- Fitting as a Probabilistic Inference Problem

Acknowledgements: These slides follow Forsyth and Ponce's "Computer Vision: A Modern Approach", Chapter 15.

Topic: The Hough Transform

- The Hough Transform
- Fitting Lines
- Fitting Curves
- Fitting as a Probabilistic Inference Problem

Fitting and Clustering

- Another definition for segmentation:
- Pixels belong together because they conform to some model.
- Sounds like "Segmentation by Clustering"...
- Key difference:
- The model is now explicit.

We have a mathematical model for the object we want to segment.
E.g. A line

Hough Transform

- Elegant method for direct object recognition
- Edges need not be connected
- Complete object need not be visible
- Key Idea: Edges VOTE for the possible model

Image and Parameter Spaces

Equation of Line: $y=m x+c$
Find: (m, c)

Consider point: $\left(x_{i}, y_{i}\right)$

Parameter space also called Hough Space

Line Detection by Hough Transform

Algorithm:

- Quantize Parameter Space (m, c)
- Create Accumulator Array $A(m, c)$
- Set $A(m, c)=0 \quad \forall m, c$

	1						1		
		1				1			
			1		1				
				2					
			1		1				
		1				1			
	1						1		

$$
c=-x_{i} m+y_{i}
$$

- Find local maxima in $A(m, c)$

Better Parameterization

NOTE: $\quad-\infty \leq m \leq \infty$
Large Accumulator
More memory and computations
Improvement: (Finite Accumulator Array Size)
Line equation: $\rho=-x \cos \theta+y \sin \theta$
Here $\quad 0 \leq \theta \leq 2 \pi$

$$
0 \leq \rho \leq \rho_{\max }
$$

Given points $\left(x_{i}, y_{i}\right)$ find (ρ, θ)
Hough Space Sinusoid

Image space

Votes

Horizontal axis is θ, vertical is rho.

Mechanics of the Hough Transform

- Difficulties
- how big should the cells be? (too big, and we merge quite different lines; too small, and noise causes lines to be missed)
- How many lines?
- Count the peaks in the Hough array
- Treat adjacent peaks as a single peak
- Which points belong to each line?
- Search for points close to the line
- Solve again for line and iterate

Real World Example

Original

Edge
Detection

Found Lines

Parameter Space

Where are the

 lines?
Other shapes

Original

Edges when using circle model

Topic: Fitting Lines

- The Hough Transform
- Fitting Lines
- Fitting Curves
- Fitting as a Probabilistic Inference Problem

Least Squares

- Popular fitting procedure.
- Simple but biased (why?).
- Consider a line:

$$
y=a x+b
$$

- What is the line that best predicts all observations $\left(\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}\right)$?
- Minimize: $\quad \sum_{i}\left(y_{i}-a x_{i}-b\right)^{2}$

Total Least Squares

- Works with the actual distance between the point and the line (rather than the vertical distance).
- Lines are represented as a collection of points where:

$$
a x+b y+c=0
$$

- And:

$$
a^{2}+b^{2}=1
$$

Again... Minimize the error, obtain the line with the 'best fit'.

Point correspondence

- We can estimate a line but, which points are on which line?
- Usually:
- We are fitting lines to edge points, so...
- Edge directions can give us hints!
- What if I only have isolated points?
- Let's look at two options:
- Incremental fitting.
- Allocating points to lines with K-means

Incremental Fitting

- Start with connected curves of edge points
- Fit lines to those points in that curve.
- Incremental fitting:
- Start at one end of the curve.
- Keep fitting all points in that curve to a line.
- Begin another line when the fitting deteriorates too much.
- Great for closed curves!

Put all points on curve list, in order along the curve empty the line point list
empty the line list
Until there are two few points on the curve
Transfer first few points on the curve to the line point list fit line to line point list
while fitted line is good enough
transfer the next point on the curve
to the line point list and refit the line end
transfer last point back to curve attach line to line list
end

K-means allocation

- What if points carry no hints about which line they lie on?
- Assume there are k lines for the x points.
- Minimize:

$$
\sum \sum d i s t(\text { line, point })^{2}
$$

- Iteration:
- Allocate each point to the closest line.
- Fir the best line to the points allocated to each line.

Hypothesize k lines (perhaps uniformly at random) or
hypothesize an assignment of lines to points and then fit lines using this assignment

Until convergence
allocate each point to the closest line refit lines

Topic: Fitting Curves

- The Hough Transform
- Fitting Lines
- Fitting Curves
- Fitting as a Probabilistic Inference Problem

Fitting Curves

- In principle, same as fitting lines.
- Minimize distances of points to the curve.
- However, how can I tell the distance between a point and a curve?
- Get your geometry book and solve it.
- Get your engineering book and approximate it.

Implicit Curves

- Coordinates satisfy some parametric equation.
- If the equation is polynomial then the curve is said to be algebraic.

Curve	equation
Line	$a x+b y+c=0$
Circle, center (a, b)	$x^{2}+y^{2}-2 a x-2 b y+a^{2}+b^{2}-r^{2}=0$
and radius r	$a x^{2}+b x y+c y^{2}+d x+e y+f=0$
where	
(including circles)	$b^{2}-4 a c<0$
	$a x^{2}+b x y+c y^{2}+d x+e y+f=0$
where	
Hyperbolae	$b^{2}-4 a c>0$
	$a x^{2}+b x y+c y^{2}+d x+e y+f=0$
where	
Parabolae	$b^{2}-4 a c=0$
General conic sections	$a x^{2}+b x y+c y^{2}+d x+e y+f=0$

Computer Vision - T2.2b - Segmentation by Fitting

Distance to an Implicit Curve

- Distance between point (x, y) and closest point of the curve (u, v).
- So, this distance vector:
- Contains the point.
- Is normal to the curve: $\phi(u, v)$
- Therefore:

$$
\begin{aligned}
& \phi(u, v)=0 \text { since }(u, v) \text { is on the curve } \\
& s=(x, y)-(u, v) \text { is normal to the curve }
\end{aligned}
$$

Calculating the distance

- We can derive an equation to this distance but solving it is not always trivial.
- Even simple polynomial curves can make this problem rather daunting.
- Several ways to approximate distances.
- Want to dig deeper?
- Forsyth and Ponce, Chapter 15.3.

Parametric Curves

- Coordinates are given as parametic functions of a parameter.

Curves	Parametric form	parameters
Circles centered at the origin	$(r \sin (t), r \cos (t))$	$\theta=r$
Circles	$(r \sin (t)+a, r \cos (t)+b)$	$t \in[0,2 \pi)$
Axis aligned	$\left(r_{1} \sin (t)+a, r_{2} \cos (t)+b\right)$	$t \in[0,2 \pi)$
ellipses		$\theta=\left(r_{1}, r_{2}, a, b\right)$
Ellipses	$\left(\cos \phi\left(r_{1} \sin (t)+a\right)-\sin \phi\left(r_{2} \cos (t)+b\right)\right.$,	$\theta=\left(r_{1}, r_{2}, a, b, \phi\right)$
	$\left.\sin \phi\left(r_{1} \sin (t)+a\right)+\cos \phi\left(r_{2} \cos (t)+b\right)\right)$	$t \in[0,2 \pi)$
cubic segments	$\left(a t^{3}+b t^{2}+c t+d, e t^{3}+f t^{2}+g t+h\right)$	$\theta=(a, b, c, d, e, f, g, h)$
		$t \in[0,1]$

Topic: Fitting as a PIP

- The Hough Transform
- Fitting Lines
- Fitting Curves
- Fitting as a Probabilistic Inference Problem

Error models

- Total least squares fitting seems 'reasonable' but it's in fact... arbitrary.
- It does not take into account the error model of our data.
- We should thus be asking the following question:
- How did the points come to not lie on a line in the first place?

Maximizing the likelihood

- Let's assume our errors are Gaussian noise perturbations to our line.
$N(0, \sigma)$
$\mathrm{au}+\mathrm{bv}+\mathrm{c}=0, \mathrm{a}^{2}+b^{2}=1$
$P($ meas. $\mid a, b, c)=\prod_{i} P\left(x_{i}, y_{i} \mid a, b, c\right)$
- We can thus maximize our log-likelihood:

$$
-\frac{1}{2 \sigma^{2}} \sum_{i}\left(a x_{i}+b y_{i}+c\right)^{2}
$$

Difficulties

- Robustness
- TLS places a huge weight on large errors.
- Leads to severe fitting errors.
- Our solution must be robust to errors.
- Missing data
- Some points are noise.
- Some points come from real lines.
- Distinguishing them is vital for a good fitting!

Robust fitting

- How do we minimize the effect of these outliers?
- M-estimators - Give noise 'heavier tails'.
- Study data points and identify outliers.
- RANSAC - Search for points that 'appear to be good' and use those.
- Want to know more?
- Forsyth and Ponce, Chapter 15 and 16.

Resources

- Forsyth and Ponce, Chapter 15

