Computer Vision

Pattern Recognition Concepts

Luis F. Teixeira
MAP-i | 2014/15

Outline

* General pattern recognition concepts
e Classification

* Classifiers
— Decision Trees
— Instance-Based Learning
— Bayesian Learning
— Neural Networks
— Support Vector Machines
— Model Ensembles

CONCEPTS

Pattern Recognition System

* A typical pattern recognition system contains
— A sensor
— A preprocessing mechanism
— A feature extraction mechanism (manual or automated)
— A classification or description algorithm
— A set of examples (training set) already classified or

described
Feedback / Adaptation

Classifi‘cation > C_Iass

algorithm assignment
Preprocessin

. ne Sensor P pand " —> Feature Clustering |, Cluster
real world enhancement extraction algorithm assignment
Regression Predicted
algorithm variable(s)

Pattern Recognition

* Tens of thousands of pattern recognition /
machine learning algorithms

 Hundreds new every year

» Every algorithm has three components:
— Representation

— Evaluation
— Optimization

Representation

Decision trees

Sets of rules / Logic programs
Instances

Graphical models (Bayes/Markov nets)
Neural networks

Support vector machines

Model ensembles

Etc.

Evaluation

Accuracy

Precision and recall
Squared error
Likelihood

Posterior probability
Cost / Utility

Margin

Entropy

K-L divergence

Etc.

Optimization

« Combinatorial optimization
— E.g.: Greedy search

« Convex optimization
— E.g.: Gradient descent

« Constrained optimization
— E.g.: Linear programming

Pattern Recognition

Understanding domain, prior knowledge, and
goals

Data integration, selection, cleaning,
pre-processing, etc.

Learning models
Interpreting results

Consolidating and deploying discovered
knowledge

Loop

Tools

0
* OpenCV ope,,c‘\’,

— http://opencv.org/

— http://www.cs.waikato.ac.nz/ml/weka/

. RapidMiner 8%) RAPID|MINER
— http://rapid-i.com/content/view/181/190/

Algorithms

* Classification
— Supervised, categorical labels

— Bayesian classifier, KNN, SVM, Decision Tree, Neural
Network, etc.

e Clustering
— Unsupervised, categorical labels

— Mixture models, K-means clustering, Hierarchical
clustering, etc.

* Regression
— Supervised or Unsupervised, real-valued labels

Algorithms

* Classification
— Supervised, categorical labels

— Bayesian classifier, KNN, SVM, Decision Tree, Neural
Network, etc.

Concepts

Feature
— A feature is any distinctive aspect, quality or characteristic. Features
may be symbolic (i.e., color) or numeric (i.e., height)

— The combination of d features is represented as a d-dimensional
column vector called a feature vector

* The d-dimensional space defined by the feature vector is called
feature space

* Objects are represented as points in a feature space. This
representation is called a scatter plot

o

[T 2 Class 1

X, § A A‘A

X W | Class3 A t‘

2
u“’;go«
X ?5
& X X

X XX X xX

| d 1 Class 2

Feature 1

Feature vector Feature space (3D) Scatter plot (2D)

Concepts

 Pattern

— Pattern is a composite of traits or features characteristic of an
individual

— In classification, a pattern is a pair of variables {x,w} where
* X is a collection of observations or features (feature vector)
* w is the concept behind the observation (label)

 What makes a “good” feature vector?

— The quality of a feature vector is related to its ability to discriminate
examples from different classes

* Examples from the same class should have similar feature values
* Examples from different classes have different feature values

Concepts

e “Good” features?

\
xxxx .

\
Ay

“Good” features

* Feature properties

\\ x
b XX
\\ x;,"“?fx
&x%x\\\ >§<, :&x
XXX \ bR I
\ N X
\ X

Linear separability Non-linear separability

“Bad” features

Multi-modal

Highly correlated features

Concepts

Classifiers

— The goal of a classifier is to partition the feature
space into class-labeled decision regions

— Borders between decision regions are called
decision boundaries

R1

R1
R2

s

R4

CLASSIFICATION

Classification

y = 1(x)
TN

output prediction feature
function vector

« Training: given a training set of labeled examples {(x,,¥4), ---,
(X, YN))> estimate the prediction function f by minimizing the
prediction error on the training set

« Testing: apply f to a never before seen test example x and
output the predicted value y = f(x)

Classification

* Given a collection of labeled examples, come up with
a function that will predict the labels of new
examples.

“four”
nine” Y IEY Y N

Training examples Novel input

* How good is some function we come up with to do
the classification?

?

 Depends on

— Mistakes made
— Cost associated with the mistakes

An example*

* Problem: sorting incoming
fish on a conveyor belt
according to species

* Assume that we have only
two kinds of fish:
— Salmon
— Sea bass

Picture taken with a camera

*Adapted from Duda, Hart and Stork, Pattern Classification, 2nd Ed.

An example: the problem

What humans see What computers see

An example: decision process

 What kind of information can distinguish one species
from the other?

— Length, width, weight, number and shape of fins, tail
shape, etc.

 What can cause problems during sensing?

— Lighting conditions, position of fish on the conveyor belt,
camera noise, etc.

 What are the steps in the process?

— Capture image -> isolate fish -> take measurements ->
make decision

An example: our system

Sensor

— The camera captures an image as a new fish enters the sorting
area

Preprocessing
— Adjustments for average intensity levels
— Segmentation to separate fish from background

Feature Extraction

— Assume a fisherman told us that a sea bass is generally longer
than a salmon. We can use length as a feature and decide
between sea bass and salmon according to a threshold on
length.

Classification
— Collect a set of examples from both species
* Plot a distribution of lengths for both classes

— Determine a decision boundary (threshold) that minimizes the
classification error

An example: features

count

Salmon

Decision
boundary :

Sea bass

|
length

We estimate the system’s probability of error and obtain a
discouraging result of 40%. Can we improve this result?

An example: features

* Even though sea bass is longer than salmon on the
average, there are many examples of fish where this

observation does not hold

 Committed to achieve a higher recognition rate, we
try a number of features
— Width, Area, Position of the eyes w.r.t. mouth...

— only to find out that these features contain no
discriminatory information

* Finally we find a “good” feature: average intensity of
the scales

An example: features

Decision
cou nt‘ gboundary

Sea bass Salmon

-
Avg. scale intensity

Histogram of the lightness feature for two types of fish in
training samples. It looks easier to choose the threshold but
we still can not make a perfect decision.

An example: multiple features

 We can use two features in our decision:
— lightness: x,
— length: x,

e Each fish image is now represented as a point
(feature vector)

X

23

in a two-dimensional feature space.

An example: multiple features

Decision
boundary

length

A
A

A
A
A,

A

>>

A‘ :
A

»
-
-
-
>
-
-
-
-
-

4

M
“A

» b
>

A
A
Sea bass :.~': Salmon A A

>

A

>>>

Avg. scale intensity

Scatter plot of lightness and length features for training samples. We
can compute a decision boundary to divide the feature space into
two regions with a classification rate of 95.7%.

An example: cost of error

e We should also consider costs of different errors we
make in our decisions.

* For example, if the fish packing company knows that:

— Customers who buy salmon will object vigorously if they
see sea bass in their cans.

— Customers who buy sea bass will not be unhappy if they
occasionally see some expensive salmon in their cans.

 How does this knowledge affect our decision?

An example: cost of error

length

Sea bass

" Salmon

New
: Decision
boundary

1

A
A
A

>
>
-..h..t >

> b p

>
3
>
43

>

b
=4
B>

>>

>

-
0
.
0
-
-
.
.
.
-
-
.
-
.

> >

A

»>
>

Avg. scale intensity

We could intuitively shift the decision boundary to
minimize an alternative cost function

An example: generalization
* The issue of generalization

— The recognition rate of our linear classifier (95.7%) met

the design specifications, but we still think we can improve
the performance of the system

— We then design a uber-classifier that obtains an impressive

classification rate of 99.9975% with the following decision
boundary

length

Sea bass

Avg. scale intensity

An example: generalization

* The issue of generalization

— Satisfied with our classifier, we integrate the
system and deploy it to the fish processing plant

— A few days later the plant manager calls to
complain that the system is misclassifying an
average of 25% of the fish

* What went wrong?

Overfitting

If we allow very complicated classifiers, we could
overfit the training data

Football player ? . N

@ No
@ VYes

Weight
Weight

A\ 4

v

Overfitting

* If we allow very complicated classifiers, we could
overfit the training data

Prediction 4,

Eeror \ fixed # training data

\ of

\\\ ‘,/‘

\‘;_ 44— true risk
}& /
. N
A N e
empirical risk <~ N
underfitting Best overfitting Complexity
Model @

Empirical risk is no longer a
good indicator of true risk

 Empirical risk is the performance on the training data —
proportion of misclassified examples

* Truerisk is the performance in a random test point —
proportion of misclassification

DECISION TREES

Decision trees

* Decision trees are hierarchical decision
systems in which conditions are sequentially
tested until a class is accepted

* The feature space is split into unique regions
corresponding to the classes, in a sequential
manner

* The searching of the region to which the
feature vector will be assigned to is achieved
via a sequence of decisions along a path of
nodes

Decision trees

root @
green yellow red
Cize2d Ghaped CGized
big :'i small round thin medium small
Watermelon Ap]flp Grape CCizer> Banana Apple CasteD
big small sweel SOUr
Grapefruit Lemon Cherry Grape

level ()

level |

level 2

level 3

Decision trees classify a pattern through a sequence of

questions, in which the next question depends on the

answer to the current question

Decision trees

 Example: predict if John will play tennis

— Divide & conquer:
 Split into subsets

* Are they pure?
(all yes or all no)

* If yes: stop
* If not: repeat

— See which subset new
data falls into

Training examples: 9 yes / 5no

..........

Day ‘Outlook |
D1 iSunny '
D2 iSunny
D3 iOvercasti
D4 Rain
D5 {Rain
D6 iRain
D7 |Overcast]
D8 iSunny '
D9 iSunny
D10 IRain
D11 iSunny |
D12 |Overcastj
D13 iOvercasti
D14 |Rain
New data:™~~""""
D15 Rain

Humidity
High
High
High
High
Normal
Normal
Normal
High
Normal
Normal
Normal
High
Normal
High

High

Wind
Weak
Strong
Weak
Weak
Weak
Strong
Strong
Weak
Weak
Weak
Strong
Strong
Weak
Strong

Weak

Play
No
No
Yes
Yes
Yes
No
Yes
No
Yes
Yes
Yes
Yes
Yes
No

?

Day Outlook! Humid

D1 Sunny iHigh

D2 Sunny | High

D8 Sunny | High

D9 Sunny 1} Normal

D11 Sunny \Normall
2yes /3 no

split further

Decision trees

D3 Overcast High

Wind
Weak
Strong
Weak
Weak
Strong

D7 Overcast Normal
D12 Overcast High
D13 Overcast Normal

4 yes / 0 no
pure subset

Day Outlook Humid

Wind

Weak .
Strong .

Strong @
Weak

Day Outlook Humid Wind
D4 Rain High Weak
D5 Rain Normal Weak

D6 Rain Normal Strong
D10 Rain Normal Weak
D14 Rain High Strong

3yes/2no
split further

Day Humid Wind

D1 High
D2 High
D8 High

Weak
Strong
Weak

Decision trees

———

—

Day Outlook Humid
D3 Overcast High
D7 Overcast Normal
D12 Overcast High
D13 Overcast Normal

4yes/0no
pure subset

Day Humid
D9 Normal
D11 Normal

Wind
Weak
Strong

Wind
Weak
Strong
Strong
Weak

Day Outlook Humid " Wind |

D4 Rain
D5 Rain
D6 Rain
D10 Rain
D14 Rain

..........

High Weak
Normal ;| Weak
Normal i Strong
Normal | Weak

High Strong

3yes/2no
split further

High

Day Humid
D1 High
D2 High
D8 High

Decision trees

Iy

es/5

no

Outlook

Day Outlook Humid Wind
D3 Overcast High Weak

P e

Humidity

Wind Day Humid Wind
Weak D9 Normal Weak
Strong D11 Normal Strong
Weak

D7 Overcast Normal Strong
D12 Overcast High Strong
D13 Overcast Normal Weak

Wind

Day Humid
D4 High

D5 Normal
D10 Normal

Wind
Weak
Weak
Weak

Day Humid Wind
D6 Normal Strong
D14 High Strong

Decision trees
 Which attribute to split on?

9vyes /5no 9yes /5 no
‘ Sun_ny Overcast Rain Weak Strong
2yes/3no 4yes/Ono 3yes/2no 6yes/2no 3yes/3no

* We want to measure “purity” of the split

— More certain about Yes/No after the split

* Pure set (4 yes / 0 no) => completely certain (100%)
* Impure set (3 yes / 3 no) => completely uncertain (50%)

— Entropy and Mutual Information measures can be used

Decision trees

* Non-boolean features

— Features with multiple discrete values
e Construct a multiway split
* Test for one value versus all others
* Group values in two disjoint subsets

— Real-valued features

e Consider a threshold split using each observed value of
the feature

e Mutual information can be used to choose the best
split

Decision trees
Overfitting

09

0.85 b -

08 F / -

0.75 F .
07 F 4
065 M

06 F On training data
On test data

Accuracy

()SS §

(’\ A ' A A A A A A
0 10 20 30 40 50 60 70 80 90 100

Size of tree (number of nodes)

How to avoid?
— Stop growing when data split not statistically significant

— Grow full tree, the post-prune (e.g. C4.5, using rule post-
pruning)

Decision trees

* Advantages
— Interpretable: humans can understand decisions
— Easily handles irrelevant attributes
— Very compact: #nodes << D after pruning
— Very fast at testing: O(#nodes)

* Disadvantages

— Only axis-aligned splits of data

— Greedy: may not find best tree
e exponentially many possible trees

INSTANCE-BASED LEARNING

k-Nearest neighbour classifier

* Given the training data D = {x,...,x,,} as a set of n
labeled examples, the nearest neighbour classifier
assigns a test point x the label associated with its
closest neighbour (or £ neighbours) in D.

* Closeness is defined using a distance function.

Distance functions

e A general class of metrics for d-dimensional patterns
is the Minkowski metric, also known as the L,norm

d 1/p
Lp(X9Y) = (E‘xi - yi‘p)
i=1

* The Euclidean distance is the L, norm

d 1/2
L,(x,y)= (E\xi —yi\z)
i=1

 The Manhattan or city block distance is the L1 norm

d
LI(X,Y) = E‘xi _yi‘
i=1

Distance functions

* The Mahalanobis distance is based on the
covariance of each feature with the class examples.

Dy x = = (xor)

— Based on the assumption that distances in the direction of
high variance are less important

— Highly dependent on a good estimate of covariance

1-Nearest neighbour classifier

Assign label of nearest training data point to each test data
point

Novel test example

Black = negative

Red = posiﬁve Closest to a

positive example
from the training
set, so classify it as
> positive.

from Duda et al.

Voronoi partitioning of feature space
for 2-category 2D data

k-Nearest neighbour classifier

* For a new point, find the & closest points from training data
e Labels of the &k points “vote” to classify

Black = negative
Red = positive

If the query lands here, the 5

NN consist of 3 negatives and
2 positives, so we classify it as
negative.

How good is KNN

* |n the limit KNN gives the optimal decision
€*(x): Error of optimal prediction
enn(x): Error of nearest neighbor
Theorem: lim,, o enn < 2¢*
Proof sketch (2-class case):

ENN = P+PNNe— + P—PNNe+
=p+(1 —pnNet) + (1 — py)PNNe+

limy, 00 PNNe+ = P+, liMp 00 PNNe— = P
limy, o0 env = P4+ (1—p4) +(1—p4)p4 = 2€"(1—€") < 2¢”
lim,, o (Nearest neighbor) = Gibbs classifier

Theorem: Hmn—)oo, k—oo, k/n—0 €kNN = €*

KNN as a classifier

 Advantages:

— Simple to implement

— Flexible to feature / distance choices

— Naturally handles multi-class cases

— Can do well in practice with enough representative data
* Disadvantages:

— Large search problem to find nearest neighbors = Highly
susceptible to the curse of dimensionality

— Storage of data
— Must have a meaningful distance function

Curse of dimensionality

* KNN is easily misled in a high-dimension space
e Why?

— Easy problems in low-dim are hard in hi-dim

— Low-dim intuitions do not apply in hi-dim
 Examples

— Normal distribution

— Uniform distribution on hypercube

— Points on hypergrid

— Approximation of hypersphere by a hypercube

— Volume of hypersphere

Feature selection

* Filter approach

— Pre-select features individually (e.g. by
information gain)

— Find best transformation that reduces
dimensionality (e.g. PCA — Principal Component
Analysis)

 Wrapper approach

— Run learner with different combinations of

features
 Forward selection

e Backward selection
* Etc.

Overfitting in KNN

* How to avoid?
— Set k by cross-validation
— Form prototypes

— Remove noisy instances

e e.g., remove X if all X’s k nearest neighbours are of
another class

BAYESIAN LEARNING

Review of probability theory

e Basic probability
— Xis a random variable
— P(X) is the probability that X achieves a certain value

P(X) A
called a probability
J\distribution/density function (PDF)
X
O<P(X)K1

/_OO P(X)dX =1 S P(X) =1

continuous X discrete X

Conditional probability

If A and B are two events, the probability of event A when we
already know that event B has occurred P[A|B] is defined by

the relation
P[AN B]

P[AIB]= PIB]

for P[B]>0

P[A|B] is read as the “conditional probability of A conditioned
on B”, or simply the “probability of A given B

Graphical interpretation

/]| o

Conditional probability

 Theorem of Total Probability
— Let B,, B,, ..., By be mutually exclusive events then

P[A]=P[A|BP[B]+.. +P[AIB]P EP[AIB]P[N
)

/«/ V

* Bayes Theorem

— Given B, B,, ..., By, a partition of the sample space S. Suppose that
event A occurs; what is the probability of event B;?

— Using the definition of conditional probability and the Theorem of
total probability we obtain

P[ANB,] P[AIB,]-P[B,]

PlA] Y PLAIB,] PIB,]

P[B, | A]=

Bayes theorem

* For pattern recognition, Bayes Theorem can be expressed as
P(Xlw;) P(w)) _P(Xla)j)~P(a)j)

EP(Xlwk)'P(a)k) PO

P(w;1X) =

where w; is the jth class and x is the feature vector

 Each term in the Bayes Theorem has a special name
— P(w;) Prior probability (of class w))
— P(w;|x) Posterior probability (of class w; given the observation x)
— P(x|w)) Likelihood (conditional prob. of x given class w))
— P(x) Evidence (normalization constant that does not affect the decision)

* Two commonly used decision rules are
— Maximum A Posteriori (MAP): choose the class w; with highest P(wjlx)

— Maximum Likelihood (ML): choose the class w; with highest P(x|w))
— ML and MAP are equivalent for non-informative priors (P(w;) constant)

Bayesian decision theory

e Bayesian Decision Theory is a statistical approach
that quantifies the tradeoffs between various
decisions using probabilities and costs that
accompany such decisions.

* Fish sorting example:
— define C, the type of fish we observe (state of nature),
as a random variable where
* C=C, forsea bass
* C=C,forsalmon

— P(C,) is the a priori probability that the next fish is a
sea bass

— P(C,) is the a priori probability that the next fish is a
salmon

Prior probabilities

Prior probabilities reflect our knowledge of how likely

each type of fish will appear before we actually see it.

How can we choose P(C,) and P(C,)?

— Set P(C,) = P(C,) if they are equiprobable (uniform priors).

— May use different values depending on the fishing area,
time of the year, etc.

Assume there are no other types of fish

— P(C,)+P(C,) =1

In a general classification problem with K classes, prior
probabilities reflect prior expectations of observing
each class and

3 pC)-1

Class-conditional probabilities

 Letx be a continuous random variable, representing the
lightness measurement

* Define p(x|C)) as the class-conditional probability density or
likelihood (probability of x given that the state of nature is C;
forj=1, 2).

* p(x|C,)and p(x]|C,) describe the difference in lightness
between populations of sea bass and salmon.

.Decision
cou nt‘ ;boundary

Sea bass Salmon

>
Avg. scale intensity

Posterior probabilities

Suppose we know P(C) and P(x|C) forj =1, 2, and measure
the lightness of a fish as the value x.

Define P(C;|x) as the a posteriori probability (probability of
the type being C, given the measurement of feature value x).

We can use the Bayes formula to convert the prior probability
to the posterior probability

P(x1C,)P(C))
P(x)

where P(x) = E;P(x 1C)P(C,)

P(C;lx)=

Making a decision

* How can we make a decision after observing the value of x?

. |C, if P(C,1x)>P(C,Ix)
Decide .
C, otherwise

 Rewriting the rule gives

e it P(xIC1)>P(C2)
Decide- PxIC,) P(C))

C, otherwise

* Bayes decision rule minimizes the error of this decision

Making a decision

e Confusion matrix
— For C, we have:

Assigned
Cl CZ
C correct mis-
. 1 | detection detection
rue
c false correct
2 alarm rejection

— The two types of errors (false alarm and mis-
detection) can have distinct costs

Minimume-error-rate classification

eeey

categories).

Let x be the D-component vector-valued random variable
(feature vector).

If all errors are equally costly, the minimum-error decision
rule is defined as

Decide C, if P(C,|x)>P(C,1x) Vj=i

The resulting error is called the Bayes error and is the best
performance that can be achieved.

Bayesian decision theory

Bayesian decision theory gives the optimal decision
rule under the assumption that the “true” values of
the probabilities are known.

But, how can we estimate (learn) the unknown
px[C),j=1,..,K?

Parametric models: assume that the form of the
density functions is known

Non-parametric models: no assumption about the
form

Bayesian decision theory

* Parametric models
— Density models (e.g., Gaussian)
— Mixture models (e.g., mixture of Gaussians)
— Hidden Markov Models
— Bayesian Belief Networks

* Non-parametric models
— Nearest neighbour estimation
— Histogram-based estimation
— Parzen window estimation

Gaussian density

Gaussian can be considered as a model where the feature vectors
for a given class are continuous-valued, randomly corrupted
versions of a single typical or prototype vector.

For x € R”
1 L) 5 (xe)
p(X) = N(M,Z) = (2”),1/2 |2 |1/2 e 2
Forx&R
, 1 _(x—uz)z
p(xX)=N(u,07)= e *°
\N2mo

Some properties of the Gaussian:
— Analytically tractable
— Completely specified by the 1st and 2nd moments

— Has the maximum entropy of all distributions with a given mean and
variance

— Many processes are asymptotically Gaussian (Central Limit Theorem)
— “Uncorrelatedness” implies independence

Bayes linear classifier

Let us assume that the class-conditional densities are Gaussian and then
explore the resulting form for the posterior probabilities.

Assume that all classes share the same covariance matrix, thus the density
for class C, is given by

1 —%(X—Mk) = (x—y)"

e
(2.717)1)/2 | Z |1/2

p(X | Ck) =

We then model the class-conditional densities p(x|C,) and class priors
p(C,) and use these to compute posterior probabilities p(C, | x) through
Bayes' theorem

The maximum likelihood estimates of a Gaussian are
] =lzn x. and i—lzn (x.— a)(x, - i)
IL‘ n i1 I _I’l i1 i u] IL‘

Assuming only 2 classes the decision boundary is linear

Nalve Bayes

* A complete probability distribution for each
class

— defines likelihood for any pointx ...

— can “generate” synthetic observations OO % 0

generative

P(C,1x)x P(x1C,) P(C)

Independence assumption

* Compute P (x,...x,

Il(

y) for every observation x;,...x,
— class-conditional “counts”, based on training data

— problem: may not have seen every x,...x, for every y
* digits: 2400 possible black/white patterns (20x20)
* spam: every possible combination of words: 210000

— often have observations for individual x; for every class

* Assume x,...x, conditionally independent given y

P(x,...x,

n=] P& pxs =] [PGy
i=1 i=1

- e

v i -
chain rule (exact) independence

Nalve Bayes

* Continuous example

— Distinguish children from adults based on size
 classes: {a,c}, attributes: height [cm], weight [kg]
* training examples: {4, w,, y, }, 4 adults, 12 children

— Class probabilities: Pa@--——-025.r()=07s
— Model for adults: M% h
* height ~ Gaussian with mean, variance - 1"”:
* weight ~ Gaussian (4,..0..) \ofw =Zi§a(hi e

e assume height and weight independent

— Model for children: same, using (#..ou.)(...0%.)

Nalve Bayes

* Continuous example

200
(o
e P(x|a)=p(h |a)p(w,|a)
Ef P(x|c)= p(h |c)p(w,|c)
2 Plalx) - P(x|a)P(a)
o P(x‘a)P(a) + P(x‘c)P(c)
200

Nalve Bayes

* Discrete example

— Separate spam from valid email (ham)
e attributes = words

D1: “send us your password” spam P (spam) =4/6 P (ham)=2/6
D2: “send us your review” ham spam ham
D3: “review your password” ham 2/4 1/2 password
D4: “review us” spam 1/4 2/2 review
D5: “send your password” spam 3/4 1/2 send
D6: “send us your account” spam 3/4 1/2 us

e . . 3/4 1/2 your
lnew email: “review us now 1/4 0/2 account

P(review us‘spam) = P(0,1,0,1,0,0

(-
s (-4 8- 233

P(review us‘ham) = P(0,1,0,1,0,0

0.87

P(ham‘review us) =

Nalve Bayes

* Advantages
— Handles missing data
— Good computational complexity

— Incremental updates

* Disadvantages o :
— Unable to handle correlated data < .°.::'..
— Probl.ems with repetitions in -
the discrete case e

— Zero-frequency problem (the training examples
may not include enough counts)

NEURAL NETWORKS

Artificial neural networks

* A neural network is a set of connected input/
output units where each connection has a
weight associated with it

* During the learning phase, the network learns
by adjusting the weights so as to be able to
predict the correct class output of the input
signals

Artificial neural networks

 Examples of ANN:

— Perceptron

— Multilayer Perceptron (MLP)

— Radial Basis Function (RBF)

— Self-Organizing Map (SOM, or Kohonen map)
* Topologies:

— Feed forward

— Recurrent

Perceptron

* Defines a (hyper)plane that linearly separates the
feature space

* The inputs are real values and the output +1,-1

e Activation functions: step, linear, logistic sigmoid,
Gaussian

y = sign(v)

|

@ V=W, + WX, + W,X,
w

’1 X ’xz

W, + wx, + w,x, =0

Training a Perceptron
Considering the simpler linear unit, where the output
0 is given by o= wg +wiz; + - + wpzy,

The weights can be learnt by minimizing the squared
1
error pig = ; S (ta — 04)?

deD
Where D is the set of training examples
15: \\:* TLLY % T\:{?}\
2. N
“104 \\\:‘\\\\‘\\Q \\& X ‘%“:‘:“;‘:::..‘.
R TR

: o
S SOOI
o= e
=N wﬁ_ e
‘E“w‘_\ﬁk ?_-:‘:’:f, --_:_-___—_—__-_

iy,

<
o

Perceptron

* Decision boundary

XA s A

+
+
- ']
+
»> >
X X]
1 - - +

 Some functions not representable

— All not linearly separable
— Therefore we need a network of perceptrons

Multilayer perceptron

To handle more complex
problems (than linearly
separable ones) we need
multiple layers.

Each layer receives its inputs
from the previous layer and

forwards its outputs to the
next layer

The result is the combination

of linear boundaries which
allow the separation of
complex data

Weights are obtained through

the back propagation
algorithm

Output layer

2nd hidden
layer

1st hidden
layer

Input data

Multilayer perceptron

* |tis possible to derive the gradient descent
rules to train

— One sigmoid unit

— Multilayer networks of sigmoid units, using
backpropagation

llllll

o(x) is the sigmoid function

1
l1+4+e %

Non-linearly separable problems

Structure Types of Exclusive-OR Classes with Most General
Decision Regions Problem Meshed regions | Region Shapes

K Bounded By
Hyperplane

Two-Layer Convex Open

Or
Closed Regions

Three-Layer Abitrary

(Complexity
Limited by No.
of Nodes)

L g

© JOF © LOICRC)

@ @) Lot

n Dr. Andrew Hunter

ANN as a classifier

 Advantages
— High tolerance to noisy data
— Ability to classify untrained patterns
— Well-suited for continuous-valued inputs and outputs
— Successful on a wide array of real-world data
— Algorithms are inherently parallel

* Disadvantages
— Long training time

— Requires a number of parameters typically best
determined empirically, e.g., the network topology or
“structure.”

— Poor interpretability: Difficult to interpret the symbolic
meaning behind the learned weights and of ""hidden units"
in the network

RBF networks

* RBF networks approximate functions using (radial)
basis functions as the building blocks. Generally, the
hidden unit function is Gaussian and the output
Layer is linear

Inputs

MLP vs RBF

e Classification

— MLPs separate classes via
hyperplanes

— RBFs separate classes via
hyperspheres X, x X x MLP

* Learning °o°
— MLPs use distributed learning

— RBFs use localized learning X

— RBFs train faster 1

* Structure

X S
— MLPs have one or more hidden 2

layers
— RBFs have only one layer

— RBFs require more hidden neurons
=> curse of dimensionality

v

SUPPORT VECTOR MACHINES

Support Vector Machine

e Discriminant function is a hyperplane (line in
2D) in feature space (similar to the
Perceptron)

* |n a nutshell:

— Map the data to a predetermined very high-
dimensional space via a kernel function

— Find the hyperplane that maximizes the margin
between the two classes

— If data are not separable find the hyperplane that
maximizes the margin and minimizes the (a
weighted average of the) misclassifications

Linear classifiers

Linear functions in R2

.

Let

')

. y

ax+cy+b=0

Linear functions in R2

')

. y

ax+cy+b=0

1

w x+b=0

Linear functions in R2

W X+b=

Let

')

. y

ax+cy+b=0

1

w x+b=0

Linear functions in R2

. -
Let W=| | X=
N V.

ax+cy+b=0

\ N i
w x+b=0

B ‘axo +CY, + b‘ distance from
- \/ 2 . 2 point to line
a” +c

Linear functions in R2

. -
Let W=| | X=
N V.

ax+cy+b=0

\ N i
w x+b=0

‘axo T "'b‘ W X+b h_ distance from
Ja2+2 |w| ~ pointtoline

Linear classifiers

Find linear function to separate positive and negative examples

@
@ ..
® X, positive: X, wW+b=0
® X, negative: X, w+b<0
@
@
© o e o
O © \
O ® ®
O
Which line
© is best?

Support Vector Machines

Classifier based on
optimal separating line
(for 2D case)

Maximize the margin
between the positive
and negative training
examples

Support Vector Machines

We want the line that maximizes the margin.

X, positive (y, =1): X, W+b=1

x; negative(y, =-1): X, w+b=-1

For support, vectors, X, W+b = =1

Support vectors

Support Vector Machines

4 Lé/— We want the line that maximizes the margin.

X, positive (y, =1): X, W+b=1
x; negative(y, =-1): X, w+b=-1

For support, vectors, X, W+b = =1

@ Distance between point | X, W+b|
and line: | w |

For support vectors:

wx+b +1

Support vectors © \ Margin HWH = HWH M=

Wl wl

Support Vector Machines

Support vectors

We want the line that maximizes the margin.

X, positive (y, =1): X, W+b=1

X, negative(y, =-1): Xx,w+b=-1

For support, vectors, X, W+b = =1

Distance between point | X, W+D|
and line: | w |

Therefore, the marginis 2/ | |[w] |

Finding the maximum margin line

1. Maximize margin 2/||w||
2. Correctly classify all training data points:

X; positive (y, =1): X, W+b=1

x; negative(y, =-1): X, -w+b=-1

Quadratic optimization problem:

.. 1
Minimize EWTW

Subject to y(w-x+b) > 1

Finding the maximum margin line

e Solution: W= Eiaz’yixi

/

learned support
weight vector

Finding the maximum margin line

* Solution: W= a,yx,
b=y —w-x. (foranysupportvector)
W-x+b=2ial.yl.x.-x +b

e Classification function:
f(X) = Slgn (W X+ b) If f(x) < O, classify as

negative,

— Slgn(zlaxzx + b) if f(x) > 0, classify as

............... : positive

Questions

 What if the features are not 2D?
 What if the data is not linearly separable?

 What if we have more than just two
categories?

Questions

e What if the features are not 2D?

— Generalizes to d-dimensions — replace line with
“hyperplane”

 What if the data is not linearly separable?

 What if we have more than just two
categories?

Questions

 What if the features are not 2D?
 What if the data is not linearly separable?

 What if we have more than just two
categories?

Soft-margin SVMs

Introduce slack variable and allow some instances to
fall within the margin, but penalize them

Constraint becomes: y(w x,+b)21-¢&, Vx,
& 20

Objective function penalizes for misclassified

instances within the margin

min [l + ¢,

C trades-off margin width and classifications
As C>oo, we get closer to the hard-margin solution

Soft-margin vs Hard-margin SVMs

e Soft-Margin always has a solution

e Soft-Margin is more robust to outliers
— Smoother surfaces (in the non-linear case)

 Hard-Margin does not require to guess the cost
parameter (requires no parameters at all)

Var, T Var, |

Var, W-X+b=0 Var,

w-x+b=0

Non-linear SVMs

e Datasets that are linearly separable with some noise
work out great:

 But what are we going to do if the dataset is just too

hard?

@ o *—0— o-0—0 *—o *—>

0 X
* How about... mapping data to a higher-dimensional
space:

Non-linear SVMs

* General idea: the original input space can be
mapped to some higher-dimensional feature space
where the training set is separable:

. o
e |l e L O ®
® T e PD: x— X o

........

o [® -
.)
3 o
. “'
@ o ’
. .,
) e - °
. ®
"""" ® o

The “Kernel Trick”

* The linear classifier relies on dot product between
vectors K(x;,X,)=x;"X

* If every data point is mapped into high-dimensional
space via some transformation @: X — @(x), the dot
product becomes:

K(X;,%;)= @(x;) T (x;)

* A kernel function is a similarity function that
corresponds to an inner product in some expanded
feature space.

Non-linear SVMs

e The kernel trick: instead of explicitly
computing the lifting transformation ¢(x),
define a kernel function K such that

K(x;,x;) = o(X;) - (X))

e This gives a nonlinear decision boundary in
the original feature space:

Y @y K(x,,X) +b

Examples of kernel functions

. Linear:

. Gaussian RBF:

T
K(x;,x;)=x; x,

2
%, -)|

207

K(x;,x;) = exp(-)

. Histogram intersection:

K(xiaxj) = Zmin(xi (k)axj (k))

Questions

 What if the features are not 2D?
 What if the data is not linearly separable?

* What if we have more than just two
categories?

Multi-class SVMs

* Achieve multi-class classifier by combining a number of
binary classifiers

* One vs. all
— Training: learn an SVM for each class vs. the rest

— Testing: apply each SVM to test example and assign
to it the class of the SVM that returns the highest

decision value
e One vs. one
— Training: learn an SVM for each pair of classes

— Testing: each learned SVM “votes” for a class to
assign to the test example

SVM iIssues

* Choice of kernel
— Gaussian or polynomial kernel is default
— if ineffective, more elaborate kernels are needed
— domain experts can give assistance in formulating
appropriate similarity measures
* Choice of kernel parameters

— e.g. o in Gaussian kernel, is the distance between closest
points with different classifications

— In the absence of reliable criteria, rely on the use of a
validation set or cross-validation to set such parameters

e Optimization criterion — Hard margin v.s. Soft margin
— series of experiments in which parameters are tested

SVM as a classifier

e Advantages
— Many SVM packages available
— Kernel-based framework is very powerful, flexible
— Often a sparse set of support vectors — compact at test
time
— Works very well in practice, even with very small
training sample sizes

e Disadvantages

— No “direct” multi-class SVM, must combine two-class
SVMs

— Can be tricky to select best kernel function for a
problem

— Computation, memory

* During training time, must compute matrix of kernel values
for every pair of examples

* Learning can take a very long time for large-scale problems

ENSEMBLE LEARNING

Ensemble learning

* What is ensemble learning?

— Ensemble learning refers to a collection of methods
that learn a target function by training a number of
individual learners and combining their predictions

* Why ensemble learning?

— Accuracy: a more reliable mapping can be obtained by
combining the output of multiple “experts”

— Efficiency: a complex problem can be decomposed
into multiple sub-problems that are easier to
understand and solve (divide-and-conquer approach)

— There is not a single model that works for all PR
problems

Ensemble learning

When to use ensemble learning?

— When it is possible to build component classifiers that are
more accurate than chance and, more importantly, that
are independent from each other

Why does it work?

— Because uncorrelated errors of individual classifiers can be
eliminated through averaging

Ensemble methods work better with ‘unstable
classifiers’ — why?

Classifiers that are sensitive to minor perturbations in
the training set. Examples:

— Decision trees

— Rule-based

— Artificial neural networks

Ensemble classifiers

Original
D Training data

v

Step 1: * * * *
Create Multiple D, D, #""""BD D
Data Sets H t
Step 2:
Build Multiple C C
Classifiers L 2 Ci C,
Step 3:
Combine

Classifiers

Ensemble learning
Bagging

— Also known as bootstrap aggregation
— Sampling uniformly with replacement

— Build classifier on each “bootstrap” sample
Boosting

— focuses more on previously misclassified records
— E.g.: Adaboost

Stacking

— apply multiple base learners (e.g. decision trees, naive
Bayes, neural networks)

Random Forests
— specifically designed for decision tree classifiers

CROSS VALIDATION

Training - general strategy

We try to simulate the real world scenario.

Test data is our future data.

Validation set can be our test set - we use it to select our
model.

The whole aim is to estimate the models’ true error on
the sample data we have.

training set validation set test set

Validation set method

 Randomly split some
portion of your data. Leave
it aside as the validation set
* The remaining data is the

training data

Validation set method

 Randomly split some
portion of your data. Leave
it aside as the validation set
* The remaining data is the
training data
; * Learn a model from the
training set

Validation set method

 Randomly split some
portion of your data. Leave
it aside as the validation set

* The remaining data is the
training data

; e Learn a model from the
training set
. * Estimate your future

performance with the test
data

Test set method

* |tis simple, however
— We waste some portion of the data

— If we do not have much data, we may be lucky or
unlucky with our test data

 With cross-validation we reuse the data

LOOCYV (Leave-one-out Cross Validation)

 Let us say we have N data
points and k as the index for
. data points, k=1..N
* Let(x,y,) be the k*" record
. * Temporarily remove (x,,y,)
T . from the dataset
* Train on the remaining N-1
datapoints
y ‘ * Test the error on (x,,y,)
X —» * Do this for each k=1..N and
report the mean error.

The single test data

LOOCYV (Leave-one-out Cross Validation)

! !
! f
! !

b

b

¥ —»

¥ —»

¥ —»

* Repeat the
validation N
times, for each
of the N data
points.

* The validation
data is changing
each time.

K-fold cross validation

rl'est \[Trainon (k -1) splits \

/'
I

k-fold

. I

In 3 fold cross validation, there are 3 runs.
In 5 fold cross validation, there are 5 runs.
In 10 fold cross validation, there are 10 runs.

the error is averaged over all runs

References

Christopher M. Bishop, Pattern Recognition and
Machine Learning, Springer, 2006.

Richard O. Duda, Peter E. Hart, David G. Stork,
Pattern Classification, John Wiley & Sons, 2001

Thomas Mitchell, Machine Learning, McGraw-Hill,
1997.

P. Domingos, “A few useful things to know about
machine learning,” CACM, 2012

Andrew Moore, Support Vector Machines Tutorial,
http://www.autonlab.org/tutorials/svm.html

References

Selim Aksoy, Introduction to Pattern Recognition, Part |,
http://retina.cs.bilkent.edu.tr/papers/patrec_tutoriall.pdf

Ricardo Gutierrez-Osuna, Introduction to Pattern Recognition,
http://research.cs.tamu.edu/prism/lectures/pr/pr_I11.pdf

Pedro Domingos, Machine Learning, http://
courses.cs.washington.edu/courses/cse446/14wi/

Kristen Grauman, Discriminative classifiers for image
recognition, http://www.cs.utexas.edu/~grauman/courses/
spring2011/slides/lecture22_classifiers.pdf

Victor Lavrenko and Nigel Goddard, Introductory Applied
Machine Learning, http://www.inf.ed.ac.uk/teaching/
courses/iaml/

