Capítulo II – Imagem Digital

Proc. Sinal e Imagem Mestrado em Informática Médica

Miguel Tavares Coimbra

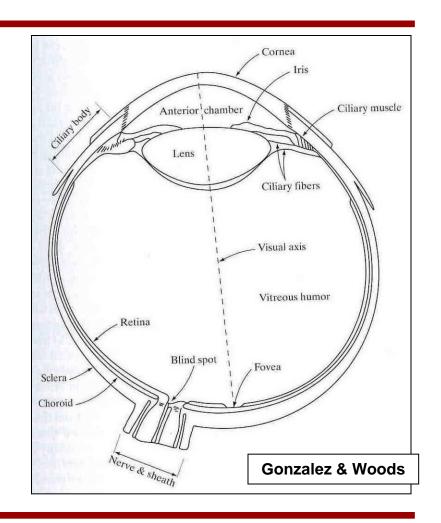
Resumo

- 1. Formação de uma imagem
- 2. Representação digital de uma imagem
- 3. Cor
- 4. Histogramas
- 5. Ruído

1. Formação de uma imagem

1. Formação de uma imagem

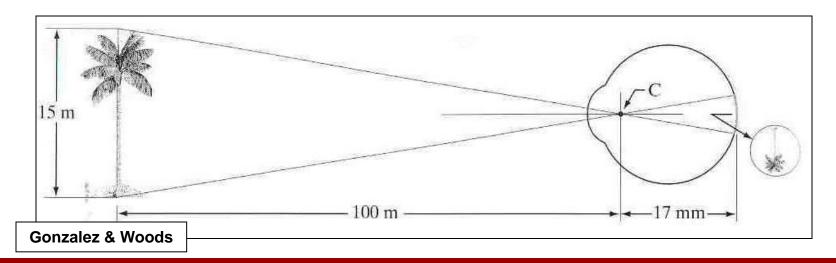
- a. Sistema visual humano
- b. Sistemas de captura de imagem
- c. Sensores digitais
- 2. Representação digital de uma imagem
- 3. Cor
- 4. Histogramas
- 5. Ruído



Sistema visual humano

- Como é que um ser humano 'vê'?
 - Sistema óptico (olho)
 - Processamento e reconhecimento (cérebro)

A grande complexidade do nosso sistema de visão reside aqui!

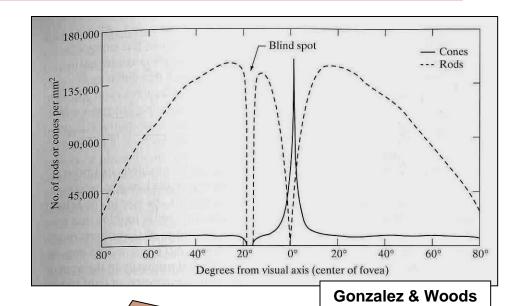


Formação de uma imagem

O nosso sistema óptico possui:

- Focagem flexível
- Adaptação à luminosidade
- Reconstrução mental

Ilusões ópticas! Podemos ver coisas que não existem!



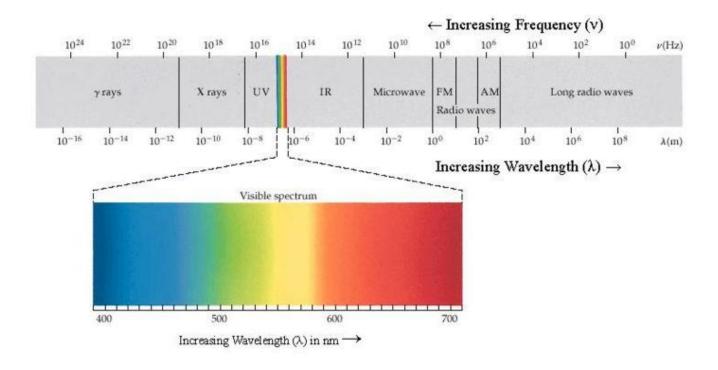
Luz e cor

- A nossa retina possui:
 - Cones Medem a frequência da luz (cor)
 - 6 a 7 milhões
 - Grande definição (nervo único)
 - Alta luminosidade
 - Bastonetes Medem a intensidade da luz (luminosidade)
 - 75 a 150 milhões
 - Baixa definição (vários para um nervo)
 - Baixa luminosidade

Apenas vemos cor no centro do nosso campo de visão!

Luz visível

- A luz é uma radiação electromagnética
 - Pode conter várias 'frequências' de luz.
- Luz visível


Um prisma decompõe a luz nas suas várias frequências (cor!)

- A gama de frequências às quais o sistema óptico humano é sensível.
- Comprimentos de onda: 400 700nm.

Outros tipos de luz

Raios X, ultravioletas, infravermelhos, etc.

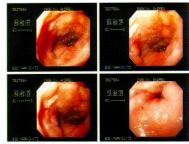
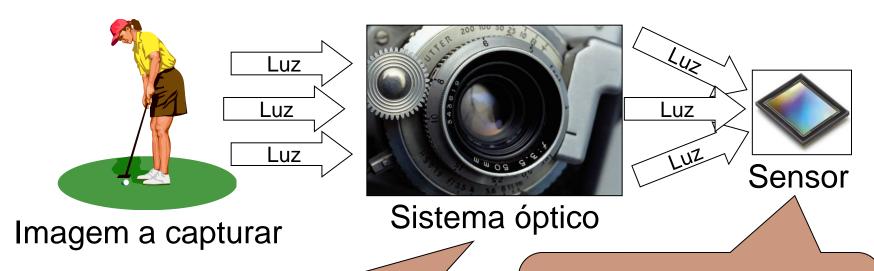


Imagem médica

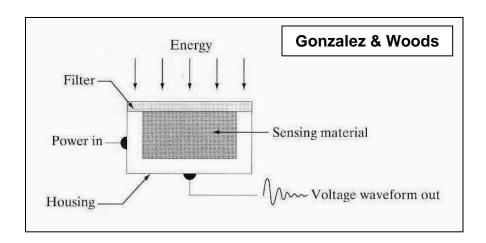
- Não usa necessariamente luz visível.
 - Luz visível
 - Endoscopia, etc.
 - Luz invisível
 - Radiografia, Tomografia, etc.
- Permite ver zonas sem visibilidade externa.
- Melhoria impressionante da capacidade diagnóstica da medicina!



Sistema de captura de imagem

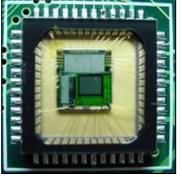
Responsável por concentrar os raios de luz sobre a matriz de sensores

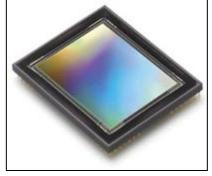
Converte o sinal luminoso num sinal eléctrico

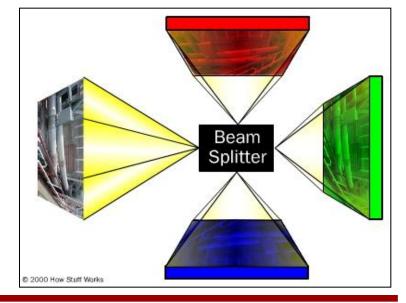


Sensor digital

- Como 'vê' uma câmara digital?
 - Sistema óptico
 - Sensores digitais
 - CCD
 - CMOS
- Imagem digital
 - Obtida através da projecção da luz através do sistema óptico, para uma matriz 2D de sensores digitais

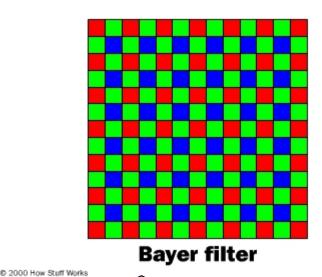





Captura da cor

Sensores digitais

- Apenas sentem intensidade da luz.
- Sistema óptico divide a luz em 3 componentes:
 - Verde
 - Vermelho
 - Azul
- Mais sensores verdes do que vermelhos e azuis.



Matriz de sensores

- Os sensores formam uma matriz 2D de pontos.
- Cada sensor regista um valor (pixel).
- Quanto mais pequenos os sensores:
 - Melhor a resolução da imagem.
 - Maior o ruído capturado.
- Várias formas de capturar a cor.

O sistema visual humano é mais sensível ao verde do que ao vermelho e ao azul

2. Representação digital de uma imagem

- 1. Formação de uma imagem
- 2. Representação digital de uma imagem
 - a. Resolução espacial
 - b. Quantização
- 3. Cor
- 4. Histogramas
- 5. Ruído

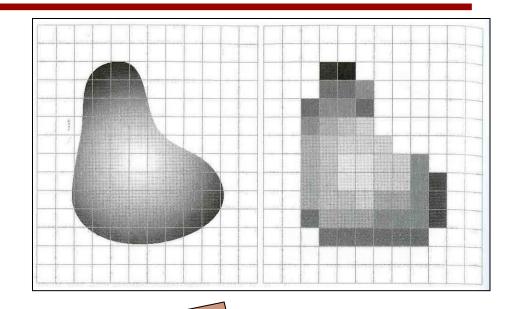

Imagem digital

Imagem analógica

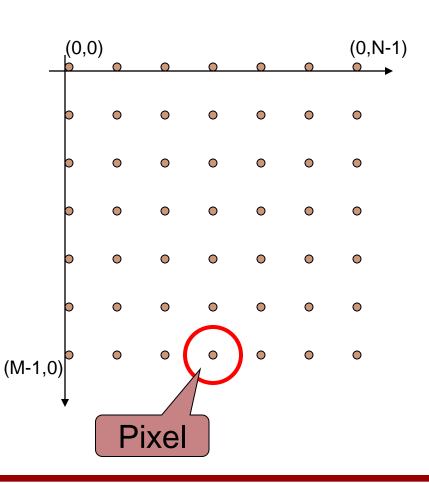
- Contínua no tempo e na amplitude.
- Melhor qualidade.
- Sensível ao ruído.

Imagem digital

- Discreta no tempo e na amplitude.
- Perda inicial: quantização e amostragem.
- Robustez ao ruído.
- Pode ser processada por um computador!

Conversão Analógica-Digital (AD)

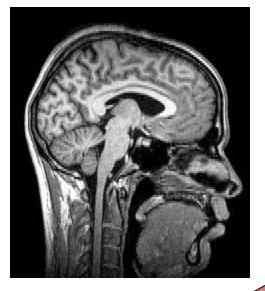
Representação matemática


 Cada ponto é um pixel com amplitude:

$$- f(x,y)$$

 Uma imagem é uma matriz M x N:

$$M = [(0,0) (0,1) ...$$


$$[(1,0) (1,1) ...$$
...

Resolução espacial

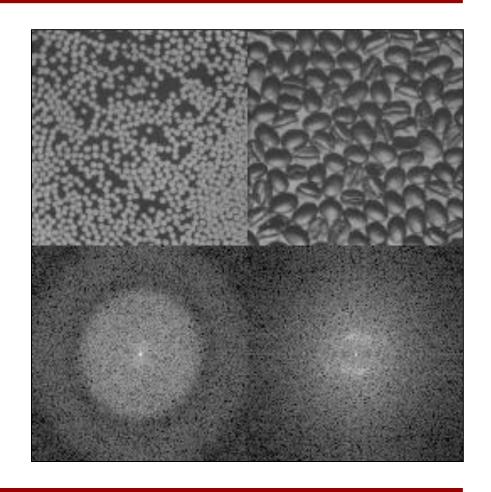
- Resolução espacial: $M \times N$
 - A amostragem define o número de pixeis da nossa imagem.
 - Mais resolução implica maior qualidade mas também maior espaço de armazenamento!

Alterar a resolução de uma imagem pode envolver a interpolação de novos pixeis -Ruído!

Quantização de uma imagem

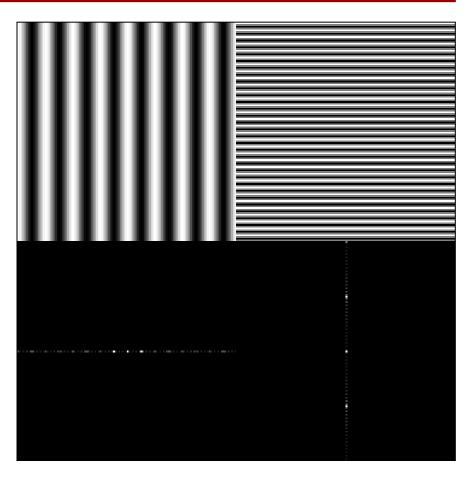
 O valor de cada pixel pode ser guardado por um número variável de bits.

$$N_{\text{valores}} = 2^{\text{nbits}}$$


- Maior número de bits:
 - Maior qualidade
 - Maior espaço de armazenamento

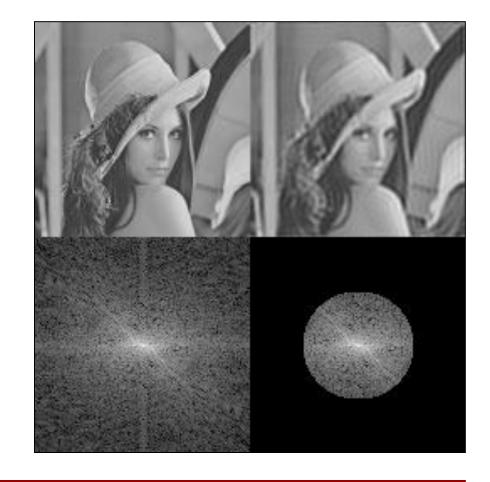
Espaço de frequências

- Como outro sinal qualquer, podemos converter uma imagem para o espaço de frequências.
 - Altas frequências implicam grandes variações de gradiente.



Frequências horizontais e verticais

Frequências:


- Horizontais
 correspondem a
 gradientes horizontais.
- Verticais
 correspondem a
 gradientes verticais.
- Frequências 'puras'
 - Correspondem a gradientes com amplitudes sinusoidais.

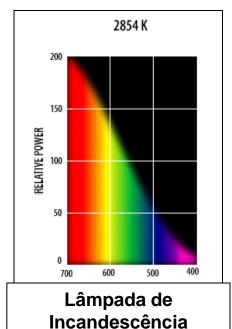
Exemplo: Frequências 'baixas'

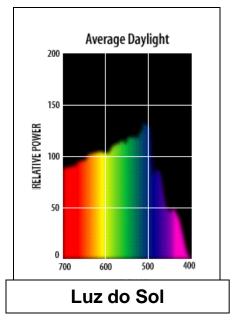
- Se eliminar as frequências altas a imagem fica 'borratada'
- Porquê?

3. Cor

- 1. Formação de uma imagem
- 2. Representação digital de uma imagem
- 3. Cor
 - a. Definição de cor
 - b. Espectro visível
 - c. Espaços de cor
- 4. Histogramas
- 5. Ruído

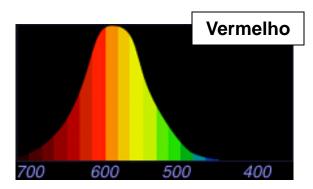
O que é a cor?

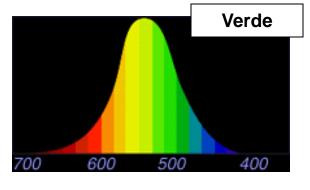

Cor pura

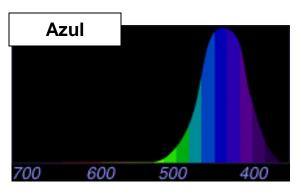

Frequência única no espectro visível da radiação electromagnética

Cor composta

 Espectro de frequências contém mais do que um valor

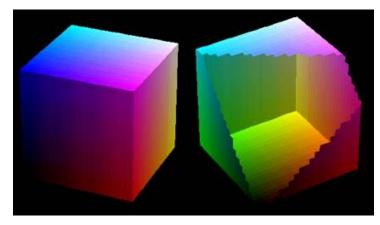


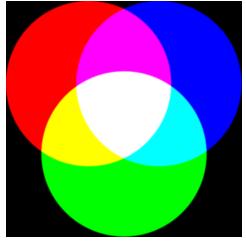



Como vemos nós a cor?

Cones

 O ser humano possui três tipos de cones na retina com sensibilidades diferentes

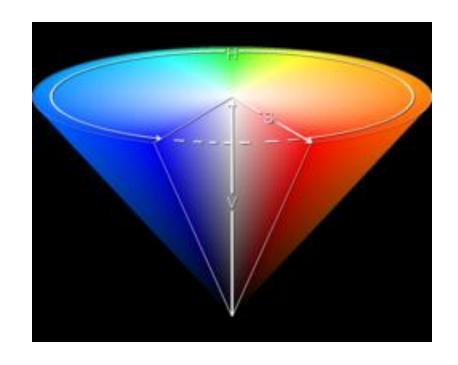

Torna-se natural modelar as imagens digitais usando três planos de cor!



O modelo RGB

- Modelo aditivo que usa 3 cores: <u>R</u>ed, <u>G</u>reen, <u>B</u>lue.
- Define-se por um cubo, em que cada cor é um eixo.

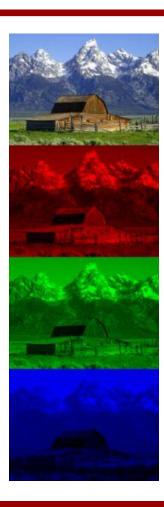
Adequado às tecnologias de projecção de imagem.



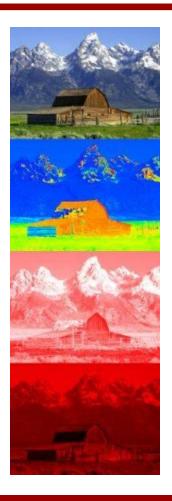
O modelo HSV

- Divide a cor em: <u>H</u>ue,
 <u>S</u>aturation, <u>V</u>alue.
- Mais adequado para descrever uma cor.
- Divide a luminosidade
 (V) da cor (H,S).

Adequado para processamento de imagem!



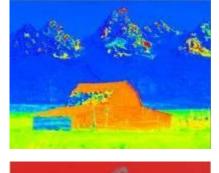
Exemplo de vários espaços de cor


RGB

- -R

HSV

- H
- S


RGB para HSI

Hue:

$$H = \begin{cases} \theta & \Leftarrow B \le G \\ 360 - \theta & \Leftarrow B > G \end{cases}$$

$$\theta = \cos^{-1} \left\{ \frac{\frac{1}{2} \left[R - G \right) + (R - B) \right]}{\left[R - G \right]^{2} + (R - B)(G - B)^{\frac{1}{1/2}}} \right\}$$

Saturation

$$S = 1 - \frac{3}{(R+G+B)} \min(R,G,B)$$

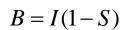
Intensity

$$I = \frac{1}{3}(R + G + B)$$

HSI para RGB

Depende do 'sector'

de H


$$H = H - 120^{\circ}$$

$$R = I(1-S)$$

$$G = I \left[1 + \frac{S \cos H}{\cos(60^{\circ} - H)} \right]$$

$$B = 3I - (R + B)$$

$$0 \le H < 120$$

$$R = I \left[1 + \frac{S \cos H}{\cos(60^{\circ} - H)} \right]$$

$$G = 3I - (R + B)$$

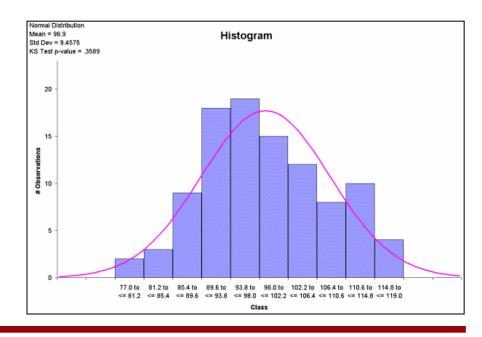
$$H = H - 240^{\circ}$$

$$G = I(1-S)$$

$$B = I \left[1 + \frac{S \cos H}{\cos(60^{\circ} - H)} \right]$$

$$R = 3I - (R + B)$$

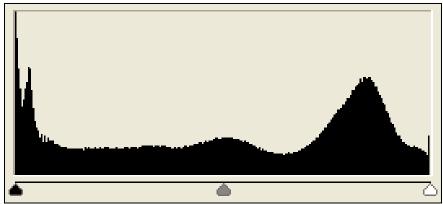
4. Histogramas


- 1. Formação de uma imagem
- 2. Representação digital de uma imagem
- 3. Cor
- 4. Histogramas
 - a. Tipos de histograma
 - b. Utilidade
- 5. Ruído

Definição matemática

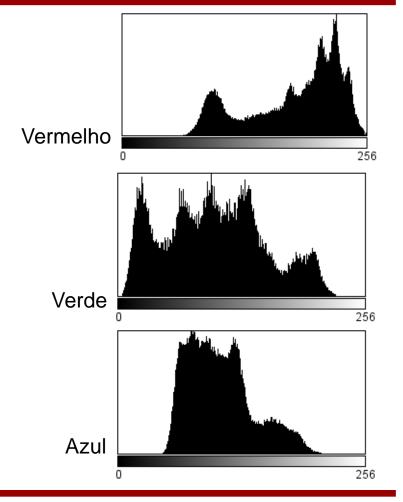
- Um histograma é uma representação da distribuição de frequências de um conjunto de medições.
- Tipicamente representa-se em forma de um gráfico de barras:

- Cada contentor começa com o valor zero.
- Cada valor medido é atribuído a um contentor (bin).
- O valor deste contentor aumenta em uma unidade.



Histograma de uma imagem

- Distribuição acumulativa da cor e/ou luminosidade de uma imagem.
- Tipicamente:
 - Número reduzido de bins.
 - Normalização.
- Caracteriza a distribuição de amplitude do sinal
 - Nenhuma informação acerca da sua distribuição espacial!

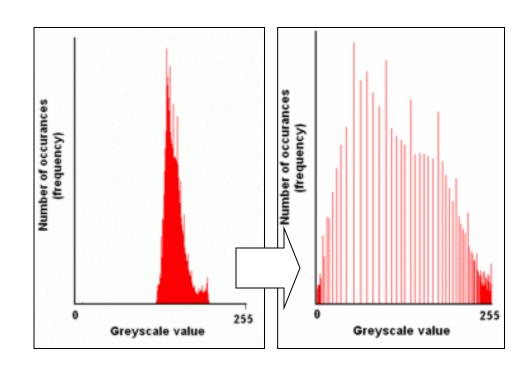


Histograma de uma imagem a cores

 Neste caso teremos tantos histogramas como eixos no espaço de cores.

Ex: Espaço RBG:

- Hist. Cor Azul
- Hist. Cor Verde
- Hist. Cor Vemelha


Outros histogramas

- Veremos mais tarde que histogramas são úteis para representar vários tipos de informação.
 - Reconhecimento de padrões!
- Posso representar:
 - Cores
 - Textura
 - Linhas
 - Etc...

Exemplo: Equalização de histograma

- Tenta melhorar a eficiência de utilização do espaço de amplitudes
 - Histograma plano
- Sinal digital:
 - Histograma 'quase' plano
- Melhora contraste
- Pode criar cores irrealistas!

$$f(a) = 255.P(a)$$

Equalização de histograma -Exemplo

5. Ruído

- 1. Formação de uma imagem
- 2. Representação digital de uma imagem
- 3. Cor
- 4. Histogramas
- 5. Ruído
 - a. Ruído em imagem
 - b. Tipos e modelos

Ruído em imagem

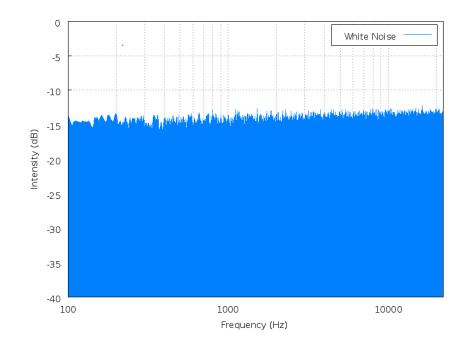
- As imagens são tipicamente degradadas por ruído.
 - Percepção visual determina a importância deste!
- Vários processos contribuem para este ruído:
 - Captura
 - Transmissão
 - Processamento

O ruído em imagem tipicamente considera-se aditivo

$$f(x,y) = g(x,y) + \nu(x,y),$$

Fontes de ruído em imagem

- Fontes de ruído 'universais':
 - Térmico, quantização/amostragem, medição.
- Concretizando para imagens digitais:
 - O número de fotões que atinge cada sensor é governado por leis quânticas: Photon Noise.
 - Ruído gerado pelos vários componentes electrónicos dos sensores:
 - On-Chip Noise, KTC Noise, Amplifier Noise, etc.


Ruído Branco

Espectro plano

 Possui a mesma energia em todas as frequências.

Artifício matemático

- Potência infinita.
- Aproximação pobre da realidade.



Ruído Gaussiano

- Densidade de probabilidade Gaussiana.
- Boa aproximação da realidade.
 - Modela a soma de várias pequenas fontes de ruído, o que acontece na realidade.

Ruído Sal e Pimenta

- Consiste em considerar que um valor pode aleatoriamente mudar para 0 ou para o máximo.
 - Acontece na realidade devido à avaria ou mau funcionamento de alguns dos sensores digitais da grelha de imagem.

Resumo

- Sistemas de captura de imagem.
- Digitalização de uma imagem.
- Imagens no espaço de frequências.
- Representação da cor.
- Histogramas de cor.
- Fontes de ruído em imagem.

