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 http://www.youtube.com/watch?v=CiE

BNDaTFOc 
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HEART SOUNDS 

 http://www.youtube.com/watch?v=2aO0HKIP3vI 
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QUESTIONS ? 

 How many heart sounds are generated during a 

complete heart beat ? 

 How many components have S2? 

 The intensity of S2 is the same in all auscultation 

points? 

 Why do I auscultate in so many points ? 

 Why there is a split in S2? 

Why is S2 important? 
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PATHOLOGICAL SPLIT 

 Split during expiration: 

1. Aortic stenosis. 

2. Hypertrophic cardiomyopathy. 

3. Left bundle branch block (LBBB).  

4. Ventricular pacemaker. 

 Split during both inspiration and expiration 

1. If splitting does not vary with inspiration. It is 
called a “fixed split S2” and it is usually associated 
to septal defect. 

2. Continuous splitting  with differents degrees 
during the respiration is an indication bundle 
branch block either LBBB or RBBB. 
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EXAMPLE – RADON TRANSFORM  

 Tomography. 

 Reconstruction using Projections.  

 The Radon transform represents the projection data 

obtained as the output of a tomographic scan. 

1
7

-1
1

-2
0
1

4
 

6 



EXAMPLE – RADON TRANSFORM  

 The inverse of the Radon transform can be used to 

reconstruct the original density from the projection 

data. 

 The Radon transform is the base of computed axial 

tomography. 
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SOURCE SEPARATION: A USUAL PROBLEM? 
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COCKTAIL PARTY PROBLEM 

http://research.ics.aalto.fi/ica/cocktail/cocktail_en.cgi 
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With priors: 

 
Signal and noise 
non overlapping 
−> Very simple 
!! 

 

Without priors: 

WHAT CAN WE 
DO ? 

If the signal and 
the noise are in 
the same 
frequency 
range? 

 

If one has no 
noise 
reference? 
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SOURCE SEPARATION: THE FUNDAMENTAL 

IDEA 
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SOURCE SEPARATION: THE FUNDAMENTAL 

IDEA 
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Assumption on Unknow mixtures: 

 Unknow mixtures are invertible (more sensors than 
sources). 

 Non-linear mixtures. 

Principles of the Solution 

Direct: Estimate the Unknow Mixing from the observations 

Indirect: Separating block, unmixed matrix. 

Are these two matrices identifiable? How to estimate them 
? 
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NO SOLUTION IF..... 

Linear Factorial Analysis: 

 Linear mixtures  𝑥 = 𝐴𝑠 
 Assumption: components of the random vector 𝑠 are 

mutually independent. 

Theoretical Results: 

 Separation is impossible if sources are independent and 
identically distributed(iid) and Gaussian. 

 Two directions for Separation 

 If sources are (iid) and NON Gaussian , ICA with HOS 
(High-order Statistic). 

 If sources are NON iid and Gaussian with SOS (Second-
order Statistics) 
 Temporally correlated sources. 

 Non stationnary sources. 
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IID AND GAUSSIAN 
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NOT IID AND GAUSSIAN 
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INDEPENDENT COMPONENT ANALYSIS 

ICA MODEL 

s1 s2 
s3 s4 

x1 x2 x3 x4 

a11 
a12 

a13 

a14 

xi(t) = ai1*s1(t) + 

          ai2*s2(t) +  

          ai3*s3(t) +  

          ai4*s4(t) 

Here, i=1:4. 

In vector-matrix notation, and 

dropping index t, this is  

x = A * s 
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This is recorded by the microphones: a linear mixture of 

the sources 

xi(t) = ai1*s1(t) + ai2*s2(t) + ai3*s3(t) + ai4*s4(t) 
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Recovered signals 
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DEFINITION OF ICA 

 ICA Mixture model: 𝑥 = 𝐴𝑠 

 𝐴 is mixing matrix; 𝑠 is matrix of source signals 

 Goal 

 Find some matrix W, so that 

𝑠 =  𝑊𝑥 

 𝑊 = inverse of 𝐴 
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ICA: LINEAR INSTANTANEOUS MIXTURES 

Theoretical Result: 

Let 𝑥 𝑡 =  𝐴𝑠 𝑡  , where 𝐴 is a regular matrix 𝑠 𝑡  is a 

source vector with statistically independent 

components, with at most one is Gaussian, then 

𝑦(𝑡)  =  𝐵𝑥(𝑡)  is a random vector with mutually 

independent components if and only if BA=DP , 

where D is a diagonal components and P is a 

permutation matrix. 
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PERMUTATION AND DIAGONALIZATION 
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INDEPENDENCE AND CORRELATION 
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ICA: CONVOLUTIVE LINEAR MIXTURES 

Mixing model 

𝑥 𝑡 =  𝐴 𝑡 ∗ 𝑠 𝑡  

First theoretical results: 

Let 𝑥 𝑡 =  𝐴 𝑧 𝑠 𝑡  , where 𝐴 𝑧  is an invertible 

matrix, whose entries are filters. 

𝑌(𝑡)  =  𝐵(𝑧)𝑥(𝑡)  is a random vector with mutually 

independent components if and only if 𝐵(𝑧)𝐴(𝑧)  =
 𝐷(𝑧) 𝑃 
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HEART SOUND PROPAGATION  

http://www.youtube.com/watch?v=QIyBINP

9QjU 
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PROPAGATION EFFECTS 

 

 The source of information's are correlated and bound 
together by physical, chemical controls and by 
communication phenomena existed on cardiac 
system.  

 These mechanical waves propagate on the thorax, 
which is an heterogeneous medium and interference 
and distortion phenomenon's are present.  

 The fonts may be mixed with each other, or with a 
time-delay version of itself and in the worst scenario it 
may be mixed with time-delay version of another 
waves, therefore in the stethoscope a mixing complex 
signal is recorded 
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CONVULOTION OPERATION 

 For any given n, how to obtain 

 

 

 

 Step 1: time reversal of either signal (e.g., f(k)f(-k) ) 

 Step 2: shift f(-k) by n samples to obtain f(n-k) 

 Step 3: multiply h(k) and f(n-k) for each k and then take 

the summation over k 







k

knfkhng )()()(
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CONVULOTION OPERATION 
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BLIND OR NOT BLIND? 

 Non blind: mixing 

nature is known, 

assuption on the  

sources 

 Blind: non assumption 

is made about the 

channel (no information 

about the input)  
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NUMBER OF SOURCES AND OBSERVATIONS 
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DETERMINED OR OVERDETERMINED LINEAR 

MIXTURES 

 Determined mixtures: 

 

Equal numbers of 

sources and 

sensors(mixtures) 𝐾 = 𝑃 

𝐴 is a regular matrix 

 Overdetermined 

mixtures 

More sensors (than 

sources) 𝐾 > 𝑃 

Solution if the mixing 

matrix is full rank (P) 

Pre-processing with 

PCA(Principal 

Component Analysis) 
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UNDERDETERMINED MIXTURES 

 More sources than 

sensors(mixtures) 

𝑃 > 𝑘 

 Identification of A and 

source estimation are 

two distinct and tricky 

problems. 

 

 If A is known (its 

inverse does not exist 

!), one cannot directly 

estimate 𝑠 

 Without extra priors, 

infinite number of 

solutions. 

 Possible solution for 

discrete or sparse 

sources. 
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SEPARATION IN NOISY MIXTURES 

 Noisy mixtures: 

𝑥(𝑡)  =  𝐴𝑠(𝑡)  +  𝑛(𝑡) 

Where the noise 𝑛 is 

independent of the 

sources 𝑠. 

 

Noise has two main 

effects: 

It leads to an error 

estimation of 𝐵. 

If we estimate 𝐵 perfectly 

𝐵 = 𝐴−1 than: 

𝑦(𝑡)  =  𝐵𝑥(𝑡)  
=  𝑠(𝑡)  +  𝐵𝑛(𝑡) 

1
7

-1
1

-2
0
1

4
 

37 



KULLBACK-LEIBLER DIVERGENCE 


x xq

xp
xpqpD )

)(

)(
(log)(),( 2

 𝐷(𝑝, 𝑞) is a positive 

number except when 𝑝 

and 𝑞. 

Drawbacks: 

 Computation of the K.L 

divergence requires 

marginal and joint’s 

distributions. 

Advantages: 

 Good independent 

measure   
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MUTUAL INFORMATION 

 )
)()(

),(
(log),(),(

2
yqxp

yxr
yxrYXI

 𝑟(𝑥, 𝑦) is a joint p-q 

distribution. 
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MUTUAL INFORMATION AND ENTROPY 

 I(X,Y)=H(Y)-H(Y/X) 

 I(X,Y)=H(X)-H(X/Y) 

 I(X,Y)=H(X)+H(Y)-H(X,Y) 

 I(X,Y)=I(Y,X) 

 I(X,X)=H(X) 
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A TRICK FOR LINEAR MIXTURES 

 In the linear 

determined case, with 

an invertible matrix 𝐴 

 𝐼 𝑌 =   𝐻 𝑌𝑖 − 𝐻(𝒀) 

 

 𝒀 = 𝑩𝑿 

 𝐼 𝑌 =
  𝐻 𝑌𝑖 − 𝐻 𝑿 −
𝐸[𝑙𝑜𝑔 𝑑𝑒𝑡𝑩 ] 

 

 Consequence: 

 𝑚𝑖𝑛𝐵 𝐼 𝑌 ↔
  𝐻 𝑌𝑖 − 𝐻 𝑿 −
𝐸 𝑙𝑜𝑔 𝑑𝑒𝑡𝑩  

 

 

 Using this trick we 

avoid estimating joint 

entropy 
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MI MINIMIZATION AND SCORE FUNCTION 

 For solving linear 

mixtures, one estimate a 

separating matrix, B, 

which minimizes 𝑰(𝒚) 

 

 Derivative of MI with 

respect to B : 



𝑑 𝑌  
𝑑𝐵

=

−

 𝐸 
−𝑑𝑙𝑜𝑔 𝑝𝑌𝑖 𝑦𝑖

𝑑𝑦𝑖

𝑑𝑦𝑖

𝑑𝐵
 − 𝐵−𝑇  

 MI  minimization and 

HOS 

 After some algebra  
𝑑 𝑌  

𝑑𝐵
= 0; 

We solve this equation 

system: 

𝐸
−𝑑𝑙𝑜𝑔 𝑝𝑌𝑖 𝑦𝑖

𝑑𝑦𝑖
 𝑦𝑖 = 0 
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DEFINITION: INDEPENDENCE 

 Two functions independent if 

 E{h1(y1)h2(y2)} = E{h1(y1)} E{h2(y2)} 

 If variables are independent, they are uncorrelated 

 Uncorrelated variables 

 Defined: E{y1y2} = E{y1} E{y2} = 0 

 Uncorrelation doesn’t equal independence 

 Ex: (0,1),(0,-1),(1,0),(-1,0) 

 E{y1
2y2

2} = 0 ≠ ¼ = E{y1
2} E{y2

2} 
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SECOND ORDER SEPARATION 

 For iid sources: 

  - Impossible!!! 

 For non iid Sources: 

  -Colored Sources 

  -Non-stationary sources 
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BASIC IDEA 

 Compute separating matrix B which decorrelates 

simultaneously 𝑦𝑖(𝑡) and  𝑦𝑗(𝑡 −   𝜏)  for various 𝜏 

and ∀ 𝑖, 𝑗 

 Equivalent to diagonalize simultaneously : 

𝐸[𝑦(𝑡)𝑦(𝑡 − 𝜏)𝑇] , for at least two values of 𝜏. 
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JOINT DIAGONALIZATION 

 Covariance Matrices of 𝑠: 𝑅𝑠 𝜏 = 𝐸[𝑠 𝑡 𝑠𝑇(𝑡 − 𝜏)]. 

 

 

 Covariance Matrices of 𝑥: 

𝑅𝑥 𝜏 = 𝐸 𝑥 𝑡 𝑥𝑇 𝑡 − 𝜏 = 𝐴𝑅𝑠 𝜏 𝐴
𝑇 , ∀𝜏. 

Can be simultaneously diagonalized by matrix B. 
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IDENTIFIABILITY THEOREM FOR COLORED 

SOURCES 

 The mixing matrix A is identifiable from the second 

order statistics, iff the correlation sequences of all 

the sources are pairwise linear independent 

𝜌𝑖 1 ,…… . , 𝜌𝑖 𝐾 ≠ 𝜌𝑗 1 ,…… . , 𝜌𝑗 𝐾  ∀𝑖 ≠ 𝑗 

 Identifiability in the time domain can be transposed  

in the frequency domain: 

 The mixing matrix A is identifiable from second 

order statistics , iff the sources have distinct 

spectra. Pairwise linear independent spectra. 
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CONSEQUENCES 

 Since separation is achieved using second order 

statistics (SOS). Gaussian sources can be 

separated. 

 Since we just use (SOS), maximum likelihood 

approach can be developed assuming Gaussian 

Densities. 
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MULTIDIMENSIONAL INDEPENDENT 

COMPONENT ANALYSIS 

 Components are not assumed to be all mutually 

independent. 

 The sources are divided into tuples. 

 Inside of the same tuple, the sources are 

dependent. In different tuples, they are independent 

from the other components. 
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DEFINITION 1 

 Let 𝐸1⨁……… . .⨁𝐸𝑐 be c a linear subspace of ℜ𝑛.  
They are said to be linearly independent  if any 

vector x, can be uniquely decomposed : 

 𝒙 =   𝒙𝒊
𝒄
𝒊=𝟏  , with 𝒙𝒊𝝐𝐸𝒊  for 1 < p < c. 

 In such cases 𝒙𝟏…… . . 𝒙𝒑 are linear components of 

𝒙 on the set 𝐸1, ……… . . , 𝐸𝑐  
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DEFINITION 2 

 A random n- dimensional vector x admits of a MICA 

decomposition 𝑥1, … . . , 𝑥𝑐  in c components if it 

exists c linearly independent components subspace 

𝐸1⨁……… . .⨁𝐸𝑐 of  ℜ𝑛, on which linear 

components are statistically independent. 
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INDEPENDENT SUBSPACE ANALYSIS 

 The explicit dependency between sources is 

modeled. 

 Let 𝑘, 𝑛 ∈ 𝑁  such that k divides n. We call an n-

dimensional random vector  y k-independent if the 

k-dimensional random vectors 

𝑦1… . 𝑦𝑘
𝑇 , …… . , 𝑦𝑛−𝑘+1… . 𝑦𝑛

𝑇 are mutually 

independent  
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MICA FOR MIBSS 

 x= 𝐴𝑠 where 𝐴 ∈ 𝐺𝑙(𝑛,ℝ) and s is a k-independent 

n-dimensional vector. Finding the indeterminacies 

of MICA then shows that 𝐴 can be found except for 

k equivalence (separability), because if x= 𝐴𝑠 and 

𝑊 is a demixing matrix such that Wx is k-

independent, then 𝑊𝐴~𝑘𝐼 so 𝑊−1~𝑘𝐴 as desired.  
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VARIANCE DEPENDENT BSS MODEL 

 Double-blind approach −> Sources are dependent 

through their variances and have a temporal 

correlation. 

 In a topographic ICA this dependencies are 

estimated using a prefixed neighborhood 

relationship. 
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VARIANCE-DEPENDENT BLIND SEPARATION 

 Each source signal 𝑠𝑖(𝑡) is a product of non-

negative activity level 𝑣𝑖(𝑡) and underlying i.i.d 

signal 𝑧𝑖 𝑡 . This is 𝑠𝑖(𝑡) = 𝑣𝑖 𝑡 𝑧𝑖 𝑡 . All the vectors 

are in ℜ𝑛. 

 In practice, the activity levels 𝑣𝑖(𝑡) are often 

dependent among different signals and each 

observed signal is expressed as: 

 𝑥𝑖 𝑡 =   𝑎𝑖𝑗𝑣(𝑡)𝑗𝑧(𝑡)𝑗 ,          𝑖 = 1… . 𝑛
𝑛
𝑗=1  
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ASSUMPTIONS 

 𝑧𝑖 𝑡  have zero mean and unit variance for all 𝑖 

 Z is mutually independent. 

 𝑧𝑖 𝑡  and 𝑣𝑗 𝑡  are mutually independent for all 

𝑖, 𝑗, 𝑡. 

 But 𝑣𝑗 𝑡  and 𝑣𝑖 𝑡  are mutually dependent over 

time. 
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OBJECTIVE FUNCTION 

 Pre-processed with a spatial whitening filter 

 J(w)=  [𝑐𝑜𝑣 𝑤𝑇𝑖  𝑧 𝑡 ]2, [𝑐𝑜𝑣 𝑗 𝑧 𝑡 − ∆𝑡 ]2𝑖,𝑗  

 Where 𝑊(𝑤1, … . . , 𝑤𝑛)
𝑇 is constrained to be 

orthogonal and lag time ∆𝑡 not zero. 

 Making the K:  

 𝐾𝑖,𝑗 = 𝑐𝑜𝑣(𝑠
2
𝑖 𝑡 , 𝑠

2
𝑗 𝑡 − ∆𝑡 ) has a full rank matrix. 

 He J is maximized when WA is a signed permutation 

matrix.  
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LOOKING TO THE SECOND HEART 

SOUND 
Pratical Application 
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NEURAL NETWORK - INTRODUCTION 

http://www.youtube.com/watch?v=gcK_5x2KsLA 
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SEGMENTATION OF THE SECOND HEART 

SOUND 

 

WHY? 

 

S2 split during the 

Respiratory cycles is an 

important information of the 

heart  Hemodynamics. 

 

So What will we do ? 

Using Neural Networks 

for Blind Source 

Separation of Convolved 

Sources Based on 

Information 

Maximization  Principles 
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BLIND SOURCE SEPARATION 

The Best Possible Clue to Separate A2 and P2 

Components !!! 

 

Bell derived a self-organizing learning algorithm which 

maximizes the information transferred throughout the 

network.  

The non linearity in the transfer function is able to pick up 

higher-order moments of the input distributions and 

perform a redundancy reduction between units in the 

output representation. 
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BLIND SOURCE SEPARATION 

 What is the Point? 
It can be used to separate out the mixtures of 

independent sources (blind separation) or reversing the 

effect of the unknown filter (blind deconvolution).  

 Maximum information is transferred when the slop 

part of the sigmoidal function is optimally lined up 

with high density parts of the input and this can be 

achieved in an adaptive manner, using stochastic 

gradient ascent rules. 
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BELL NEURAL NETWORK 

HOW IT WORKS? 
 Maximum information is transferred 
when the slop part of the sigmoidal 
function is optimally lined up with 
high density parts of the input and 
this can be achieved in an adaptive 
manner, using stochastic gradient 
ascent rules. 

 

 Disadvantages : 
 It only uses a single network layer 
and the optimal mappings 
discovered are constrained to be 
linear. 

  It does no take into account time 
delays between the sensors  

 It was not tested in a real noisy 
environment 

 

 

BUT !! 

Torkkola extended for the cases 
where the sources may be delayed 
with respect to each other. He also 
derived the adaptation equations for 
the delays and weights in the network 
by maximizing in the information 
transferred through the network. 

 

                                      
AND !! 

 Amari  developed a new on-line 
learning algorithm which 
minimizes a statistical dependency 
among outputs is derived for blind 
source separation of mixed signals 
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Gathering all these ideas........... 

.........….... Maybe!!!!! 
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Thank You  
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QUESTIONS?? 

1
7

-1
1

-2
0
1

4
 

66 


