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m Research focus: we try to combine knowledge and innovation from
computing science with that of medicine

m Clinical knowledge is not shallow and therefore requires a decent
knowledge representation method (difficult issue, much progress
during last three decades, but still a long way to go)

m Uncertainty is an essential ingredient of any form of clinical decision
making

m = Machine learning should take knowledge representation and
uncertainty into account (compare medical statistics)
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disease

m status after myocardial infarction
m chronic obstructive pulmonary

Pandora’s box

Rob is 67 years old and has been ill for some time, in particular he is
currently treated for:

m diabetes mellitus type 2 .

Rob is not unique ...
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Challenge: dealing with diseases and their interactions
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Cisease of urinary system & male genital organs.
R = . Neurotie disorders, personality disorders, & other nonpsychotic mental disurders

m Complexity: many individual diseases and classes of disease

m Probabilistic relationships: uncertain interactions between diseases,
regional, social, and gender differences in prevalence
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Machine learning

m Knowledge representation and reasoning:
m how to exploit probabilistic graphical models to capture clinical

knowledge
m model-based diagnosis, prediction and decision-theoretic planning

m Decision support and clinical guidelines: how to integrate task
execution with probabilistic reasoning

m Learning probabilistic models about disease interactions from large
health-care databases:

Health-care data * ;fr%l;?l?rigiﬂc
Nivel, UMC LHrecht e
UMC Nijmegen
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Big healthcare data
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State of the art in multimorbidity

m Paired comparison of frequence of occurence of signs and symptoms
given two disorders as likelihood ratio or odds ratio:

P(fld) _ Odds(ds|f)
P(F | o) Odds(ds | f)

with f a feature, e.g. symptom, lab result, and d1, d» two disorders

m Example: Odds Ratios derived from a clinical research:
’ ‘ Diabetes Mellitus ‘

Stroke 1.46
Heart Failure 1.76
Diabetes Mellitus | 1.0

Hypertension 2.65
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Traditional method: regression

m Measures to compare two disorders are determined by:

m Linear regression for continuous outcome O on explanatory variables
(predictors) e:

P(O|e)~N(u,X) with u=E[O|e]=p8Te

m Logistic regression for dichotomous outcomes:

P(O | e) ~ Bernoulli(p) with logit(E[O | e]) = 3Te

m Example logistic regression with an interaction term:

m logit(E[F | di, db]) = Bo + frd2 + fadz + [12d1d>
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Regression: interaction term [3;;

Disorders Dy and D, and patient findings F:

Odds(f | di, do)Odds(f | dy, ds)

Odds(f | di, do)Odds(f | dy, dy)
di, da | F)N(d1, &2 | )
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Regression: other measures

Regression gives us outcomes like:
] Odds(d1 ‘ dQ,F)
m Odds(d> | di, F)

But with some calculation we can also obtain measures like:
m Odds(d; | F)
m Odds(dy | F)
m Odds(di,d> | F)

For example, using the odds derived in clinical research on one of the
previous slides, we obtain:

Odds( hypertension, diabetes | heartfailure) = 1.88
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Capturing interaction by regression

Given a set of outcomes and observations, to obtain joint probabilities

using regression, in order to investigate interactions within multimorbidity,
we need:

m a regression model for each outcome variable of interest

m within each regression model all possible interaction terms
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Graphical representation

wrong, diagnostic model right, causal model

W) () () (oo

The diagnostic model represents regression analysis of D;. It assumes all
remaining variables are independent and certain, whereas in the causal
model all true (possible) dependencies are modeled

Probabilistic graphical models, such as Bayesian networks, support
explicit modelling by a graph (uncovered by structure learning)
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Concurrent multimorbidity

Independent diseases co-occur at the same time (unconditionally
independent)

| P(D,', Dj) = P(D,)P(DJ)

No common signs and symptoms:

m VF: Conditional independence
m P(D;,D; | F)=P(D; | F)P(Dj | F)
m Logistic regression: 3; =0
m Structure learning: no edges (paths)
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Concurrent multimorbidity

Independent diseases co-occur at the same time (unconditionally
independent)

m P(Di, Dj) = P(Dj)P(D))

Common signs and symptoms:
m JF: Conditional dependence
m P(D;,D; | F)# P(D; | F)P(D; | F)
m Logistic regression: 3; # 0
m Structure learning: D; — F < D;

Hypertension

Heart Failure
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Confounding — common cause — multimorbidity

Dependent diseases:
| P(D,‘, Dj) 7& P(D,)P(DJ)
because of
m JF: Common cause (conditional independence)
m P(D;,Dj | F) = P(D; | F)P(D; | F)
m Logistic regression: 3; =0
m Structure learning: D; < F — D;

Smoking
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Causal multimorbidity

Dependent diseases:
= P(D;, Dj) # P(Di)P(Dj)

m D; dependent of D;
m P(D;, D | F) = P(D; | D))P(D; | F)
m Logistic regression: 3; # 0
m Structure learning: F — D; — D;

Smoking
Pulmonary
Hypertension
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Multimorbidity — types of correlation

Multimorbidity
P(Di, D) = P(Di)P(D)) P(Di, D;) # P(Di)P(D))
Concurrent
Conditionally
Independent

Conditionally
Dependent

)

P(Di, Dj|F) = P(Di|F)P(D;|F)  P(Di, Dj|F) # P(D;IF)P(D;|F)  P(D;, Dj|F) = P(Di|F)P(Dj|F) P(D;) = P(D;|1D1)P(Di)
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Logistic regression versus Bayesian networks

m Logistic Regression
m Diseases often used as ...

B outcome variable in one model (A)
m explanatory variable in another model (B)
m = multiple models

m Use of interaction terms:
m (j = 0 — True Independence or Confounding?
m Bj # 0 — Conditional Dependence or Causality?
m Bayesian Networks
m All variables treated as uncertain
® one model!
m (possible) representation of underlying processes
m Interactions automatically incorporated
m Allows distinguishing between various forms of multimorbidity
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Disease modelling by Bayesian networks

single disease

environment

(characteristics) (genetics)

disease

’

multiple diseases

environment

pathophysiology

patho- patho- patho-
physiology X physiology Y physiology Z

P P

(omman )

(omn)

laboratory
results

laboratory laboratory laboratory
results 1 results 2 results 3

Abstract model of a single disease (left) and multiple diseases (right)
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Big data: multilevel regression

m To model variation of outcomes between various groups (e.g. different
general practices), taking into account correlation within groups

m Formulation in terms of regression models (with / being a vector of
higher level variables):

m multilevel linear regression:
P(Ox | e,1) NN(:U"Z) with 1 =E[O | e, /] = Bre = (6« +7kI)Te

m multilevel logistic regression:
P(Ox | e,1) ~ Bernoulli(p) with logit(E[Ok | €,/]) = (6x + /)" e

with k the group index, v the level parameters, and d, the group
variation
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Multilevel regression

10+ ® observations group A
= observations group B
gl ——normal regression (no levels)

—— multilevel regression group A
—— multilevel regression group B

Limitations:
m Only comparison between one outcome variable and predictors
m Only predictions are treated as uncertain
m No explicit knowledge about relationships between predictors

m Within multimorbidity some variables are both outcome and predictor

Peter Lucas (Radboud University) Porto



Disease modelling of multimorbidity

Graphical representation of risks, pathophysiology, and symptomatology:
nvironment therapy T,

[sym ptomatology SX]

Disease

S —_
pathophysiology B) Geriatric Syndrome (daily functioning)
—_ _—

(symptomatology Sy]

—
therapy T¢

Disease
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Disease modelling of multimorbidity

Graphical representation of risks, pathophysiology, and symptomatology:
nvironment therapy T,

(sym ptomatology SX>

) Disease
(pathoph siology A

S —_
pathophysiology B) Geriatric Syndrome (daily functioning)
—_ _—

(symptomatology Sy)

therapy T¢

m logit(E[DiseaseA | Age, Gender, SymptomX]) =
Boa + BiaAge + PaaGender + (34SymptomX
m logit(E[DiseaseB | Age, Gender, SymptomX, SymptomY]) =
Bos + BipAge + B2 Gender + B3 SymptomX + B4 SymptomY
m logit(E[DiseaseC | Age, Gender, SymptomY , DiseaseB]) =
Boc + BicAge + Bac Gender + B3¢ SymptomX + B4¢ DiseaseB
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As a Bayesian network

A Bayesian network is a tuple B = (G, X, P), with G = (V, E) a directed
acyclic graph, X = {X, | v € V} a set of random variables indexed by V,
and P a joint probability distribution such that:

P(Xi=x1 A AXy=x) = HP(XV:XV|Xj:xjfora||j€7r(v))
veV

Simple example: ©
7N

@\ /
€5,

P(V) = P(Xue | Xu1, Xom)P(Xut | X6)P(Xom | Xe)P(Xc)

<+ explanatory variables

< outcome variables

Structure and parameters of a Bayesian network can be learned from data.
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Combination of concepts

In summary, with patient data acquired from general practices
and the aim of modelling multiple disease, we are facing:

hierarchical data structures
— which can be analysed using multilevel regression

multiple diseases with multiple possible interactions
— which can be modelled using probabilistic graphical methods

m Bayesian networks
m undirected graphs
m hybrid graphs

Our goal — adopting both concepts into multilevel Bayesian networks
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MLBN with independence and intra-level structure

Here all variables are uncertain (random) and expressed as such
Representation of different levels of outcomes (and other variables)

| |
| |
m Inter-level dependence --»
| |

Intra-level dependence —

Level 3
Level 2 ‘\\\ /
Level 1 @

Peter Lucas (Radboud University) Porto



Toy example

Peter

Practice
] 25.00% - practiced

] 25.00% - practi

Type
[ 50.00% - general

] 2500% - practice?
[ 25.00% - practicel

Area

] 25.00% - utrecht
] 25.00% - gelderland|
] 50.00% - limburg

| | 25.00% - shared
|- 25.00% - singleton|

Urbaricity

B 75.00% -city

] 50.00% - male

] 50.00% - female

h 4
Dizbetes
] 52.92% - no
] 7.02% - yes|

Hypertension
] 5127% - no
] 32.73% - ves|

]  25.00% - rural

Retinopathy
] 53-25% - ne
6.75% - yes




Cardiovascular model - MLBN at 3 time points

health determinants health determinants health determinants
base line 3 years follow up 5 years follow up

heart failure

nephropathy | nephropathy | nephropathy |

()
cardiovascular cardiovascular cardiovascular
. e . multimorbidi multimorbidi
multimorbidity base line ultimorbidity 3 ultimorbidity 5
years follow up years follow up
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Transition probabilities

# health # health # health # chronic # chronic # chronic
determinants determinants determinants cardiovascular cardiovascular cardiovascular
base line 3 years 5 years diseases diseases diseases

base line 3 years 5 years
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In context - diabetes mellitus
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diabetics —— base line —— 3yr follow-up —— 5yr follow-up
non-diabetics - ®- base line - 4- 3yr follow-up - ®- 5yr follow-up
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Conclusions

m Machine learning in medicine

m Requires a combination of knowledge representation, reasoning and
learning methods
m Big healthcare data: need for new methods

m Methodology
m Integration of multilevel analysis and Bayesian networks
m Visualization of interactions between disease variables
m Personalization of patients (e.g., diabetics)
m Fundament towards clinical guidelines that deal with multimorbidity
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