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Background

Research focus: we try to combine knowledge and innovation from
computing science with that of medicine
Clinical knowledge is not shallow and therefore requires a decent
knowledge representation method (difficult issue, much progress
during last three decades, but still a long way to go)
Uncertainty is an essential ingredient of any form of clinical decision
making
⇒ Machine learning should take knowledge representation and
uncertainty into account (compare medical statistics)
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Pandora’s box

Rob is 67 years old and has been ill for some time, in particular he is
currently treated for:

diabetes mellitus type 2
status after myocardial infarction
chronic obstructive pulmonary
disease

Rob is not unique ...

2/3rd of patients older than 65 years have 2 or more disorders at the
same time
However, medicine is organised around single disorders! = problem of
multimorbidity
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Challenge: dealing with diseases and their interactions

Complexity: many individual diseases and classes of disease
Probabilistic relationships: uncertain interactions between diseases,
regional, social, and gender differences in prevalence
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Machine learning

Knowledge representation and reasoning:
how to exploit probabilistic graphical models to capture clinical
knowledge
model-based diagnosis, prediction and decision-theoretic planning

Decision support and clinical guidelines: how to integrate task
execution with probabilistic reasoning

Learning probabilistic models about disease interactions from large
health-care databases:
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Big healthcare data

Multiple sources
practices

Source characteristics
urbanicity
size
type

Statistical methods
multi-level
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State of the art in multimorbidity

Paired comparison of frequence of occurence of signs and symptoms
given two disorders as likelihood ratio or odds ratio:

P(f | d1)

P(f | d2)
or

Odds(d1 | f )

Odds(d2 | f )

with f a feature, e.g. symptom, lab result, and d1, d2 two disorders

Example: Odds Ratios derived from a clinical research:
Diabetes Mellitus

Stroke 1.46
Heart Failure 1.76
Diabetes Mellitus 1.0
Hypertension 2.65
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Traditional method: regression

Measures to compare two disorders are determined by:

Linear regression for continuous outcome O on explanatory variables
(predictors) e:

P(O | e) ∼ N (µ,Σ) with µ = E[O | e] = βT e

Logistic regression for dichotomous outcomes:

P(O | e) ∼ Bernoulli(p) with logit(E[O | e]) = βT e

Example logistic regression with an interaction term:

logit(E[F | d1, d2]) = β0 + β1d2 + β2d2 + β12d1d2
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Regression: interaction term βij

Disorders D1 and D2 and patient findings F :

exp(β12) =
Odds(f | d1, d2)Odds(f | d1, d2)

Odds(f | d1, d2)Odds(f | d1, d2)

=
λ(d1, d2 | f )λ(d1, d2 | f )

λ(d1, d2 | f )λ(d1, d2 | f )

=

P(d1,d2|f )
P(d1,d2|f )

P(d1,d2|f )
P(d1,d2|f )

P(d1,d2|f )
P(d1,d2|f )

P(d1,d2|f )
P(d1,d2|f )

=

{
P(d1, d2 | f )P(d1, d2 | f )

P(d1, d2 | f )P(d1, d2 | f )

}{
P(d1, d2 | f )P(d1, d2 | f )

P(d1, d2 | f )P(d1, d2 | f )

}
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Regression: other measures

Regression gives us outcomes like:
Odds(d1 | d2,F )

Odds(d2 | d1,F )

But with some calculation we can also obtain measures like:
Odds(d1 | F )

Odds(d2 | F )

Odds(d1, d2 | F )

For example, using the odds derived in clinical research on one of the
previous slides, we obtain:

Odds(hypertension, diabetes | heartfailure) = 1.88
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Capturing interaction by regression

Given a set of outcomes and observations, to obtain joint probabilities
using regression, in order to investigate interactions within multimorbidity,
we need:

a regression model for each outcome variable of interest

within each regression model all possible interaction terms
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Graphical representation

wrong, diagnostic model

D1

F1 F2 D2 D3

right, causal model

D1

F1

D2

F2

D3

The diagnostic model represents regression analysis of D1. It assumes all
remaining variables are independent and certain, whereas in the causal
model all true (possible) dependencies are modeled

Probabilistic graphical models, such as Bayesian networks, support
explicit modelling by a graph (uncovered by structure learning)
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Concurrent multimorbidity

Independent diseases co-occur at the same time (unconditionally
independent)

P(Di ,Dj) = P(Di )P(Dj)

No common signs and symptoms:
∀F : Conditional independence

P(Di ,Dj | F ) = P(Di | F )P(Dj | F )
Logistic regression: βij = 0
Structure learning: no edges (paths)

Depression Hypertension

Symptom
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Concurrent multimorbidity

Independent diseases co-occur at the same time (unconditionally
independent)

P(Di ,Dj) = P(Di )P(Dj)

Common signs and symptoms:
∃F : Conditional dependence

P(Di ,Dj | F ) 6= P(Di | F )P(Dj | F )
Logistic regression: βij 6= 0
Structure learning: Di → F ← Dj

COPD Hypertension

Heart Failure
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Confounding – common cause – multimorbidity

Dependent diseases:
P(Di ,Dj) 6= P(Di )P(Dj)

because of
∃F : Common cause (conditional independence)

P(Di ,Dj | F ) = P(Di | F )P(Dj | F )
Logistic regression: βij = 0
Structure learning: Di ← F → Dj

COPD LungCancer

Smoking
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Causal multimorbidity

Dependent diseases:
P(Di ,Dj) 6= P(Di )P(Dj)

Dj dependent of Di

P(Di ,Dj | F ) = P(Dj | Di )P(Di | F )
Logistic regression: βij 6= 0
Structure learning: F → Di → Dj

COPD
Pulmonary
Hypertension

Smoking
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Multimorbidity – types of correlation

Multimorbidity

Concurrent

P(Di ,Dj ) = P(Di )P(Dj )

Associative

P(Di ,Dj ) 6= P(Di )P(Dj )

Conditionally
Independent

P(Di ,Dj |F ) = P(Di |F )P(Dj |F )

Di Dj

F

βij = 0

Conditionally
Dependent

P(Di ,Dj |F ) 6= P(Di |F )P(Dj |F )

Di Dj

F

βij 6= 0

Confounding

P(Di ,Dj |F ) = P(Di |F )P(Dj |F )

Di Dj

F

βij = 0

Causal

P(Dj ) = P(Dj |Di )P(Di )

Di Dj

F

βij 6= 0
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Logistic regression versus Bayesian networks

Logistic Regression
Diseases often used as ...

outcome variable in one model (A)
explanatory variable in another model (B)
⇒ multiple models

Use of interaction terms:
βij = 0 → True Independence or Confounding?
βij 6= 0 → Conditional Dependence or Causality?

Bayesian Networks
All variables treated as uncertain

one model!
(possible) representation of underlying processes

Interactions automatically incorporated
Allows distinguishing between various forms of multimorbidity
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Disease modelling by Bayesian networks

single disease
environment

characteristics genetics

disease

pathophysiology

signs

symptoms

laboratory
results

multiple diseases
environment

characteristics genetics

disease A disease B

patho-
physiology X

patho-
physiology Y

patho-
physiology Z

sign 1 sign 2 sign 3

symptom 1 symptom 2 symptom 3

laboratory
results 1

laboratory
results 2

laboratory
results 3

Abstract model of a single disease (left) and multiple diseases (right)
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Big data: multilevel regression

To model variation of outcomes between various groups (e.g. different
general practices), taking into account correlation within groups

Formulation in terms of regression models (with l being a vector of
higher level variables):

multilevel linear regression:
P(Ok | e, l) ∼ N (µ,Σ) with µ = E[O | e, l ] = βke = (δk + γk l)

T e

multilevel logistic regression:
P(Ok | e, l) ∼ Bernoulli(p) with logit(E[Ok | e, l ]) = (δk + γk l)

T e

with k the group index, γk the level parameters, and δk the group
variation
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Multilevel regression

0 1 2 3 4 5 6
0

2

4

6

8

10 observations group A
observations group B
normal regression (no levels)
multilevel regression group A
multilevel regression group B

Limitations:
Only comparison between one outcome variable and predictors
Only predictions are treated as uncertain
No explicit knowledge about relationships between predictors
Within multimorbidity some variables are both outcome and predictor
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Disease modelling of multimorbidity

Graphical representation of risks, pathophysiology, and symptomatology:

environment

patient
characteristics

genetics

pathophysiology A

pathophysiology B

pathophysiology C

therapy TA

symptomatology SX

symptomatology SY

therapy TC

physiology PX

physiology PY

daily functioning

Disease

Disease

Geriatric Syndrome

logit(E[DiseaseA | Age,Gender ,SymptomX ]) =
β0A + β1AAge + β2AGender + β3ASymptomX

logit(E[DiseaseB | Age,Gender ,SymptomX ,SymptomY ]) =
β0B + β1BAge + β2BGender + β3BSymptomX + β4BSymptomY

logit(E[DiseaseC | Age,Gender ,SymptomY ,DiseaseB]) =
β0C + β1CAge + β2CGender + β3CSymptomX + β4CDiseaseB
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Disease modelling of multimorbidity

Graphical representation of risks, pathophysiology, and symptomatology:

environment

patient
characteristics

genetics

pathophysiology A

pathophysiology B

pathophysiology C

therapy TA
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As a Bayesian network

A Bayesian network is a tuple B = (G ,X ,P), with G = (V ,E ) a directed
acyclic graph, X = {Xv | v ∈ V } a set of random variables indexed by V ,
and P a joint probability distribution such that:

P(X1 = x1 ∧ · · · ∧ Xn = xn) =
∏
v∈V

P(Xv = xv | Xj = xj for all j ∈ π(v))

Simple example: G

HT DM

HF

← explanatory variables

← outcome variables

P(V ) = P(XHF | XHT ,XDM)P(XHT | XG )P(XDM | XG )P(XG )

Structure and parameters of a Bayesian network can be learned from data.
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Combination of concepts

In summary, with patient data acquired from general practices
and the aim of modelling multiple disease, we are facing:

1 hierarchical data structures
→ which can be analysed using multilevel regression

2 multiple diseases with multiple possible interactions
→ which can be modelled using probabilistic graphical methods

Bayesian networks
undirected graphs
hybrid graphs

Our goal → adopting both concepts into multilevel Bayesian networks
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MLBN with independence and intra-level structure

Here all variables are uncertain (random) and expressed as such
Representation of different levels of outcomes (and other variables)
Inter-level dependence 99K

Intra-level dependence →

Level 3

Level 2

Level 1 E1

Ei

En

O1 O2

I1

I2

L11 L1m1

L21 L2m2
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Toy example
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Cardiovascular model - MLBN at 3 time points

health determinants
base line

practice

other chronic diseases

obesity

dyslipidemia

hypertension

diabetes mellitus

ischemic disease

heart failure

stroke

nephropathy

retinopathy

cardiovascular
multimorbidity base line

health determinants
3 years follow up

practice

other chronic diseases

obesity

dyslipidemia

hypertension

diabetes mellitus

ischemic disease

heart failure

stroke

nephropathy

retinopathy

cardiovascular
multimorbidity 3
years follow up

health determinants
5 years follow up

practice

other chronic diseases

obesity

dyslipidemia

hypertension

diabetes mellitus

ischemic disease

heart failure

stroke

nephropathy

retinopathy

cardiovascular
multimorbidity 5
years follow up
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Transition probabilities

# health
determinants

base line

0

1

2

3

# health
determinants

3 years

0

1

2

3

# health
determinants

5 years

0

1

2

3

86%

12%

2%

86%

11%

3%

94%

6%

100%

81%

17%

2%

84%

14%

2%

93%

7%

100%

# chronic
cardiovascular

diseases
base line

0

1

2

3

4+

# chronic
cardiovascular

diseases
3 years

0

1

2

3

4+

# chronic
cardiovascular

diseases
5 years

0

1

2

3

4+

91%

8%

1%

80%

17%

3%

78%

19%

3%

53%

47%

100%

87%

11%

2%

73%

22%

5%

68%

25%

7%

45%

55%

100%
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In context - diabetes mellitus
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Conclusions

Machine learning in medicine
Requires a combination of knowledge representation, reasoning and
learning methods
Big healthcare data: need for new methods

Methodology
Integration of multilevel analysis and Bayesian networks
Visualization of interactions between disease variables
Personalization of patients (e.g., diabetics)
Fundament towards clinical guidelines that deal with multimorbidity
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