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Stochastic Tomography
and its Applications in 3D Imaging of Mixing Fluids

James Gregson⇤ Michael Krimerman Matthias B. Hullin Wolfgang Heidrich

University of British Columbia

Figure 1: Left: Photo of an acquisition rig for fluid phenomena, consisting of 5–16 strobe-synchronized consumer cameras. Middle:
Example capture of one of the cameras. Right: Reconstruction of an unsteady two-phase flow at different points in time. Note how the novel
tomographic technique introduced in this paper manages to capture the fine-scale features in this challenging dataset. SAD regularizer, 100M
sample mutations/frame, 6 min/frame.

Abstract

We present a novel approach for highly detailed 3D imaging of tur-
bulent fluid mixing behaviors. The method is based on visible light
computed tomography, and is made possible by a new stochastic
tomographic reconstruction algorithm based on random walks. We
show that this new stochastic algorithm is competitive with special-
ized tomography solvers such as SART, but can also easily include
arbitrary convex regularizers that make it possible to obtain high-
quality reconstructions with a very small number of views. Finally,
we demonstrate that the same stochastic tomography approach can
also be used to directly re-render arbitrary 2D projections without
the need to ever store a 3D volume grid.
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Generation—Digitizing and scanning;
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1 Introduction

The capture of dynamic 3D phenomena has been the subject of con-
siderable research in computer graphics, extending to both the scan-
ning of deformable shapes, such as human bodies (e.g. [de Aguiar
et al. 2007; de Aguiar et al. 2008]), faces (e.g. [Bickel et al. 2007;
Alexander et al. 2009]), and garments (e.g. [White et al. 2007;
Bradley et al. 2008]), as well as natural phenomena including liquid
surfaces [Ihrke and Magnor 2004; Wang et al. 2009], gases [Atch-
eson et al. 2008], and flames [Ihrke and Magnor 2004]. Access
to this kind of data is not only useful for direct re-rendering, but
also for deepening our understanding of a specific phenomenon.
The data can be used to derive heuristic or data-driven models, or
simply to gain a qualitative understanding of what a phenomenon
should look like before simulating it.

In this paper we focus on the capture of mixing processes between
two liquids, as well as the dissolving of powdered dye into liq-
uid. Like several other recent works [Ihrke and Magnor 2004; Ihrke
et al. 2005; Atcheson et al. 2008], our capture process is based on
visible light computed tomography (CT), which allows us to use
inexpensive, off-the-shelf camera arrays. However, in addition to
devising an effective capture setup for this specific problem, we
also make significant algorithmic improvements to tomographic re-
construction techniques in general. In particular, we develop a new
stochastic tomography algorithm that is especially well suited for
the types of application scenarios encountered in graphics. Such ap-
plications typically have a relatively sparse set of views compared
to more traditional settings for CT, such as medical imaging.

To our knowledge, Stochastic Tomography is the first CT algorithm
that is both matrix-free and, by default, also gridless. Neither the to-
mography matrix nor the final volume grid need to be stored, which
enables the reconstruction of larger, more detailed volumes than
would be feasible with traditional methods. Moreover, we show
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Figure 7. Views of three different reconstructions of the “torch” dataset. The same two input images were used for all methods.
Since all methods reconstruct the input views, only novel views of the reconstructed flame are shown.

reconstruction method (views) RMS error
input all

flame sheet solution (2) 0 26.6
multiplication solution (2) 0 21.5
blob-based method (3) 13.3 19.0
flame sheet decomposition (3) 10.1 18.4
flame sheet decomposition (3/7) 11.5 15.8

Table 1. Per-pixel RMS image reconstruction error for dif-
ferent algorithms applied to the “jet” dataset. For the last
entry, three input views were used for basis generation and
seven for optimizing photo-consistency. Note that the first
two reconstructions reproduce the input views exactly.
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Figure 8. Dependence of image error on the number B of
generated basis fields (Section 5.2, Step 1).

7. Concluding Remarks

A current limitation of our multi-view technique is the
planar configuration of the input viewpoints. While pla-
narity is used for efficiency reasons, it may be possible
to derive an efficient reconstruction method that combines
Flame Sheets from non-planar views.
More generally, the question of how best to capture the

global 3D structure and dynamics of fire remains open. To-
ward this goal, we are investigating new spatio-temporal co-
herence constraints and are studying ways to integrate our
approach with traditional fire simulation methods.
Finally, while our limited experiments suggest that

Flame Sheets and the Flame-Sheet Decomposition Algo-
rithm are useful for fire reconstruction, these tools may also

prove useful in more general contexts. This includes sparse-
view tomography problems in medical diagnostics [17] and
accelerated image-based methods for volume rendering.
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generated basis fields (Section 5.2, Step 1).
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[14] A. Schödl, R. Szeliski, D. H. Salesin, and I. Essa, “Video textures,”
in Proc. SIGGRAPH, pp. 489–498, 2000.

[15] D. Drysdale, An Introduction to Fire Dynamics. Chichester: John
Wiley and Sons, Second ed., 1998.

[16] P. J. Narayanan, P. W. Rander, and T. Kanade, “Constructing virtual
worlds using dense stereo,” in Proc. ICCV, pp. 3–10, June 1998.

[17] A. C. Kak and M. Slaney, Principles of Computerized Tomographic
Imaging. New York: IEEE Press, 1988.

[18] T. Frese, C. A. Bouman, and K. Sauer, “Adaptive wavelet graph
model for Bayesian tomographic reconstruction,” IEEE Transactions
on Image Processing, vol. 11, pp. 756–770, July 2002.

[19] G. T. Herman and A. Kuba, eds.,Discrete Tomography: Foundations,
Algorithms, and Applications, (Boston), Birkhäuser, 1999.
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Figure 7. Views of three different reconstructions of the “torch” dataset. The same two input images were used for all methods.
Since all methods reconstruct the input views, only novel views of the reconstructed flame are shown.

reconstruction method (views) RMS error
input all

flame sheet solution (2) 0 26.6
multiplication solution (2) 0 21.5
blob-based method (3) 13.3 19.0
flame sheet decomposition (3) 10.1 18.4
flame sheet decomposition (3/7) 11.5 15.8

Table 1. Per-pixel RMS image reconstruction error for dif-
ferent algorithms applied to the “jet” dataset. For the last
entry, three input views were used for basis generation and
seven for optimizing photo-consistency. Note that the first
two reconstructions reproduce the input views exactly.
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Figure 8. Dependence of image error on the number B of
generated basis fields (Section 5.2, Step 1).

7. Concluding Remarks

A current limitation of our multi-view technique is the
planar configuration of the input viewpoints. While pla-
narity is used for efficiency reasons, it may be possible
to derive an efficient reconstruction method that combines
Flame Sheets from non-planar views.
More generally, the question of how best to capture the

global 3D structure and dynamics of fire remains open. To-
ward this goal, we are investigating new spatio-temporal co-
herence constraints and are studying ways to integrate our
approach with traditional fire simulation methods.
Finally, while our limited experiments suggest that

Flame Sheets and the Flame-Sheet Decomposition Algo-
rithm are useful for fire reconstruction, these tools may also

prove useful in more general contexts. This includes sparse-
view tomography problems in medical diagnostics [17] and
accelerated image-based methods for volume rendering.
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Figure 2: Eight images captured during a single sweep of the laser plane.

off the mirror, the laser is spread into a vertical sheet of light by the
cylindrical lens. This sheet of light creates an illuminated plane of
smoke, which the camera views from a perpendicular direction.

During scanning, the galvanometer sweeps the laser sheet from
the front to the back of the smoke volume, while the camera cap-
tures images of the scattered light. The galvanometer then rapidly
jumps back to the front of the smoke volume and the process is re-
peated. In this work we capture 200 images during each volume
scan. At 5000 frames per second, this allows the volume to be
scanned at 25 Hz. We placed both the camera and galvanometer 3
meters from the working volume, and chose the camera lens, cylin-
drical lens, and galvanometer scan angle so that the camera field
of view and laser frustum were both 6�. This provided a working
volume of approximately 30x30x30 cm.

The galvanometer control software also triggers the camera, al-
lowing the frame capture to be synchronized with the position of
the laser slice. This assures that corresponding slices in successive
captured volumes are sampled at the same position.

The high frame rate and the small fraction of the total light scat-
tered to the camera require a relatively powerful laser. We use an
argon ion laser that produces 3 watts of light at a set of wavelengths
closely clustered around 500 nm.

3.1 Calibration

Interpreting the image data as a density field requires knowing the
geometry and radiometry of the camera and lighting setup. We use
a planar checkerboard pattern to calibrate the pose and intrinsic pa-
rameters of the camera using the technique of [Zhang 2000].

(a) (b)

Figure 3: (a) Filter with horizontal lines used for characterizing
light volume. (b) Captured image of laser through filter.

We calibrate the position and intensity of the laser, as well as the
position of the sequential laser planes Ps, by placing a pattern of
horizontal lines between the cylindrical lens and the working vol-
ume. This changes the vertical slice of light into a series of dots.
We then place a checkerboard at an angle such that it is illuminated
by the laser and also visible to the camera. Because the position
of the checkerboard is determined by the camera calibration pro-
cedure, we can then determine the position of a given dot of light
in a given frame corresponding to one position of the laser slice.
Moving the checkerboard to another position allows the same dot
of light to be observed at a different 3D position. Connecting these
dots then gives a line which passes through the nodal point Lc of

the laser scanner. Repeating this for another dot gives another such
line, and intersecting the two lines determines Lc.

Similarly, any two identified points on the laser line for a given
slice s, together with Lc, determines the plane Ps of illumination.

We observed that the intensity of illumination varied as a func-
tion of slice s and of elevation angle f within each laser slice. To
correct for this, we placed a uniform diffuse plane at an angle where
it was visible to both the laser and the camera and captured a se-
quence of frames. As the laser scans this reflectance standard, the
observed intensities are directly proportional to the intensity of laser
light for each laser plane and pixel position. Having calibrated the
laser planes Ps and the camera position, we can find the 3D point
v corresponding to each laser plane and pixel position, and apply
the appropriate intensity compensation when computing densities
along the ray from the laser position Lc through the point v. Al-
though this corrects for the relative intensity differences across the
laser frustum, we should note that we do not measure the absolute
intensity of the laser. The resulting density fields are therefore only
recovered up to an unknown scale factor.

We have assumed that image intensity values can be directly in-
terpreted as density values. This assumes that the effects of extinc-
tion and multiple scattering within the volume are negligible. Al-
though we found that this assumption held for the smoke volumes
we captured, this assumption will fail when the densities become
very high such as for thick smoke or dyes in water, or when the
scattering volume becomes large.

4 Measuring scattering parameters

To render a captured density volume accurately, we must also know
the basic scattering characteristics of the medium. In particular we
must know the phase function, which describes the angular distribu-
tion of scattered light, and the albedo, which describes the tendency
of the medium to scatter light rather than absorb it.

To measure these quantities, we use the setup shown in Figure 4.
Smoke is confined within a transparent tank. A fan circulates the air
to maintain homogeneity. A spherical glass observation chamber is
added at the top.

4.1 Phase Function

The phase function of a scattering medium describes the distribu-
tion of outgoing scattered light per scattering event. It is assumed
to be a function only of the angle between the direction of the in-
coming light and the direction of scattered light, or phase angle.

We developed a novel apparatus to measure the phase function
from a single photograph. We first fill the tank and observation
chamber with smoke. Relatively thin smoke is used to minimize the
effect of multiple scattering. We then direct the laser beam through
the spherical observation chamber. A strip of a 45 degree conical
mirror encircles the observation chamber, as seen in Figure 5(a).
Two small holes are drilled through the conical mirror to allow the
laser to pass through it into the observation chamber, and to exit
without creating unwanted reflections or stray light.

Smoke%only�
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Figure 1: Examples of our method. The parameters for rendering clouds are estimated from the real photograph shown in the small inset at
the top left corner of each image. The synthetic cumulonimbus clouds are rendered using the estimated parameters.

Abstract

Clouds play an important role in creating realistic images of out-
door scenes. Many methods have therefore been proposed for dis-
playing realistic clouds. However, the realism of the resulting im-
ages depends on many parameters used to render them and it is
often difficult to adjust those parameters manually. This paper pro-
poses a method for addressing this problem by solving an inverse
rendering problem: given a non-uniform synthetic cloud density
distribution, the parameters for rendering the synthetic clouds are
estimated using photographs of real clouds. The objective func-
tion is defined as the difference between the color histograms of
the photograph and the synthetic image. Our method searches for
the optimal parameters using genetic algorithms. During the search
process, we take into account the multiple scattering of light inside
the clouds. The search process is accelerated by precomputing a set
of intermediate images. After ten to twenty minutes of precomputa-
tion, our method estimates the optimal parameters within a minute.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism; I.3.3 [Computer Graphics]: Picture/Image
Generation;

Keywords: clouds, rendering parameters, inverse problem

Links: DL PDF

1 Introduction

Clouds are important elements when synthesizing images of out-
door scenes to enhance realism. A volumetric representation is of-
ten employed and the intensities of the clouds are computed taking
into account the scattering and absorption of light in order to display
realistic clouds. However, one of the problems is that the quality of
the rendered image depends on many parameters, which need to be
adjusted manually by rendering the clouds repeatedly with different
parameter settings. This is not an easy task since the relationship
between the resulting appearance of the clouds and the parameters
is highly nonlinear. The expensive computational cost for the ren-
dering process makes this more difficult. This paper focuses on
automatic adjustment of the parameters to address this task.

Recently, many real-time methods have been proposed for editing
the parameters used in rendering images [Harris and Lastra 2001;
Bouthors et al. 2008; Zhou et al. 2008]. These methods are fast so-
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Figure 1: Acquiring scattering parameters. Left: Samples of two materials (milk, blue curacao) in glass cells used for acquisition. Middle:
Samples illuminated by a trichromatic laser beam. The observed scattering pattern is used as input for our optimization. Right: Rendering
of materials in natural illumination using our acquired material parameter values.

Abstract
Translucent materials are ubiquitous, and simulating their appear-
ance requires accurate physical parameters. However, physically-
accurate parameters for scattering materials are difficult to acquire.
We introduce an optimization framework for measuring bulk scat-
tering properties of homogeneous materials (phase function, scat-
tering coefficient, and absorption coefficient) that is more accurate,
and more applicable to a broad range of materials. The optimization
combines stochastic gradient descent with Monte Carlo rendering
and a material dictionary to invert the radiative transfer equation. It
offers several advantages: (1) it does not require isolating single-
scattering events; (2) it allows measuring solids and liquids that are
hard to dilute; (3) it returns parameters in physically-meaningful
units; and (4) it does not restrict the shape of the phase function
using Henyey-Greenstein or any other low-parameter model. We
evaluate our approach by creating an acquisition setup that col-
lects images of a material slab under narrow-beam RGB illumina-
tion. We validate results by measuring prescribed nano-dispersions
and showing that recovered parameters match those predicted by
Lorenz-Mie theory. We also provide a table of RGB scattering pa-
rameters for some common liquids and solids, which are validated
by simulating color images in novel geometric configurations that
match the corresponding photographs with less than 5% error.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing;

Keywords: scattering, inverse rendering, material dictionaries
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1 Introduction

Scattering plays a critical role in the appearance of most materials.
Much effort has been devoted to modeling and simulating its visual
effects, giving us precise and efficient scattering simulation algo-
rithms. However, these algorithms produce images that are only as
accurate as the material parameters given as input. This creates a
need for acquisition systems that can faithfully measure the scatter-
ing parameters of real-world materials.

Collecting accurate and repeatable measurements of scattering is
a significant challenge. For homogeneous materials—which is the
primary topic of this paper—scattering at any particular wavelength
is described by two scalar values and one angular function. The
scattering coefficient �

s

and absorption coefficient �
a

represent the
fractions of light that are scattered and absorbed, and the phase
function p(✓) describes the angular distribution of scattering. Mea-
surement is difficult because a sensor almost always observes the
combined effects of many scattering and absorption events, and
these three factors cannot be easily separated. Indeed, for deeply-
scattering geometries, similarity theory [Wyman et al. 1989] proves
that one can analytically derive distinct parameter-sets that nonethe-
less produce indistinguishable images.

Most existing acquisition systems address the measurement chal-
lenge using a combination of two strategies (e.g., [Hawkins et al.
2005; Narasimhan et al. 2006; Mukaigawa et al. 2010]). First, they
manipulate lighting and/or materials to isolate single-scattering ef-
fects; and second, they “regularize” the recovered scattering param-
eters by relying on a low-parameter phase function model, such as
the Henyey-Greenstein (HG) model. These approaches can provide
accurate results, but both of the employed strategies have severe
limitations. The single-parameter HG model limits applicability to
materials that it represents well; and this excludes some common
natural materials [Gkioulekas et al. 2013]. Meanwhile, isolating
single scattering relies on either: (a) diluting the sample [Hawkins
et al. 2005; Narasimhan et al. 2006], which cannot be easily ap-
plied to solids or to liquids that have unknown dispersing media;
or, (b) using structured lighting patterns [Mukaigawa et al. 2010],
which provide only approximate isolation [Holroyd and Lawrence
2011; Gupta et al. 2011] and therefore induce errors in measured
scattering parameters that are difficult to characterize.
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The inverse problem�

�t � 0subject%to�

Coefficient%must%be%posi`ve�model�observa`on�
4.2.2 Constrained problem: Interior point

Here we introduce a constrained optimization with inequality constraints of the form;

min

�
t

f0(�t

) subject to f
i

(x)  0, i = 1, · · · , m, (37)

where �
t

2 <N⇥M is a real vector and f0, · · · , f
m

: <N⇥M ! < are twice continuously differen-
tiable.

The idea is to approximate it as an unconstrained problem. Using Lagrange multipliers, we can
first rewrite problem (37) as

min

�
t

f0(�t

) +

mX

i=1

I(f
i

(�
t

)), (38)

where I : < ! < is an indicator function which keeps the solution inside the feasible region;

I(f) =

(
0, f  0

1, f > 0.
(39)

The problem (38) now has no inequality constraints, while it is not differentiable due to I .
The barrier method26 is an interior point method which introduces a logarithmic barrier function

to approximate the indicator function I as follows;

ˆI(f) = �(1/t) log(�f), (40)

where t > 0 is a parameter to adjust the accuracy of approximation. The log barrier function goes
to infinity rapidly as f goes close to 0 while it is close to 0 when f are far away from 0. Since ˆI(f)

is differentiable, we have

min

�
t

f0(�t

) +

mX

i=1

�(1/t) log(�f
i

(�
t

)), (41)

or equivalently,

min

�
t

tf0(�t

) �
mX

i=1

log(�f
i

(�
t

)). (42)

The barrier method solves (42) iteratively by increasing the parameter t. At the limit of t ! 1,
the above problem coincides with the original problem (38).

4.3 Algorithm for solving the inverse problem

Algorithm 3 shows the our algorithm which uses a barrier method with Quasi-Newton for solving
the inverse problem. We should mention the following parts where we have modified the original
algorithm.26

Warm start For each inner loop, the Quasi-Newton method needs initial guess of the inverse
Hessian B0. Instead of fixing B0 for every inner loop, we reuse B

k

of the last inner loop to
accelerate the convergence (shown in Lines 4 and 19 in Algorithm 3).
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IV. NUMERICAL SIMULATIONS

A. Simple material
We describe numerical simulation results of the pro-

posed method for evaluation. A two-dimensional material
is divided into 10⇥10 voxels as shown in Figure 4(a). The
material has almost homogeneous extinction coefficients
of value 0.05 except few voxels with much higher coeffi-
cients of 0.2, which means those voxels absorb light much
more than other voxels. A light source is assumed to lit a
light at each of m positions to the top layer, and a detector
observes the outgoing light at each of m positions from
the bottom layer. The variance �

2 of Gaussian function
(1) for scattering from one layer to the next layer is set to
2. The upper bound u in Eq. (8) is set to 1.

Estimated extinction coefficients are shown in Figure
4(b). The homogeneous part of the material with extinc-
tion coefficients of 0.05 (voxels shaded in light gray) is
reasonably estimated because estimated values fall in the
range between 0.04 to 0.06. In contrast, the dense part
of the material with extinction coefficients of 0.2 (voxels
shaded in dark gray) is not estimated well but looks blurred
vertically. This blur effect is due to the experimental
setting that the light paths go vertically from top to bottom
inside the material.

This effect can be verified by simply rotating the setting
by 90 degrees (now the configuration is a horizontal one)
and applying the proposed method. Figure 4(c) shows
the estimation result when the light source is on the left
side of the material, and the detector is on the right
side. The estimated extinction coefficients are blurred now
horizontally because light paths go from left to right.

A simple trick to integrate these two results is to take
the average of them, which is shown in Figure 4(d). The
blur effect is then reduced by averaging and the estimation
of extinction coefficients is improved. Root means square
errors (RMSEs) for Fig. 4(b) and Fig. 4(c) are 2.92⇥10

�4

and 4.40 ⇥ 10

�4, respectively. By averaging, RMSE for
Fig. 4(d) decreases to 2.60⇥ 10

�4.
Values of cost functions are shown in Figure 5. The

original cost function (6) decreases steadily and is less
than 10

�5 after 24 iterations, while the cost function of the
barrier method seems not to change over iterations. These
plot shows that the barrier method effectively minimizes
the original cost function while the constraints on the
extinction coefficients are satisfied. This can be verified
also as the observed and estimated light intensities as the
difference of which is minimized. Figures 6(a) and 6(b)
shows observations Iij for ground truth and estimation
(of vertical configuration). Each row i in this matrix
representation is a set of observations at j. For example,
the third and fourth rows represent the observations where
incident light position is i = 3, 4, where it is right above
the dense voxels. Hence the observed light at j = 3, 4

below the dense voxels is much weaker then other diagonal
values. Because our formulation of constraint optimization
minimizes the difference between them, Figures 6(a) and
6(b) are quite similar to each other as the value of
difference in Fig. 5 indicates.

(a) (b)

(c) (d)

Figure 4: Simulation results of a material of size 10⇥ 10.
(a) Ground truth of the distribution of extinction coeffi-
cients shown as values in each voxel as well as by voxel
colors. (b) Estimated extinction coefficients. A light source
and detector are above and blow the media. (c) Estimated
extinction coefficients. A light source and detector are left
and right sides of the media. (d) Average of (b) and (c).

Cost function values over iterations are shown in Figure
8 for each material. These curves show that the proposed
method effectively minimizes the objective function and
seems to work well for any kind of materials.

B. Complex materials

Simulation results with more complex materials are
shown in Figure 7. All materials are of size 10 ⇥ 10 but
have more complex distribution of extinction coefficients.
Estimated results are shown in the right column, made of
the averaging results of vertical and horizontal configura-
tions as in Fig. 4(d)

First material has four dense voxels apart from each
other (Fig. 7(c)). Because vertically (or horizontally)
aligned voxels affect to light paths, the estimated result
has a significant blur effect that makes the appearance of
the distribution a blurred faint rectangle instead of four
corners (7(b)). This is a limitation of the proposed method
currently, which must be improved in future.

Second material has dense voxels arranged in a U-shape
(Figure 7(c)). Nevertheless this has also a lot of vertically
or horizontally aligned voxels, the estimated result looks
reasonable (Figure 7(d)) in which we can see clearly the
U-shape is reconstructed. This result is quite promising,
while the values of four corners are much thinner than the
ground truth compared to voxels in between.
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Estimated results are shown in the right column, made of
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First material has four dense voxels apart from each
other (Fig. 7(c)). Because vertically (or horizontally)
aligned voxels affect to light paths, the estimated result
has a significant blur effect that makes the appearance of
the distribution a blurred faint rectangle instead of four
corners (7(b)). This is a limitation of the proposed method
currently, which must be improved in future.

Second material has dense voxels arranged in a U-shape
(Figure 7(c)). Nevertheless this has also a lot of vertically
or horizontally aligned voxels, the estimated result looks
reasonable (Figure 7(d)) in which we can see clearly the
U-shape is reconstructed. This result is quite promising,
while the values of four corners are much thinner than the
ground truth compared to voxels in between.
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below the dense voxels is much weaker then other diagonal
values. Because our formulation of constraint optimization
minimizes the difference between them, Figures 6(a) and
6(b) are quite similar to each other as the value of
difference in Fig. 5 indicates.
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Figure 4: Simulation results of a material of size 10⇥ 10.
(a) Ground truth of the distribution of extinction coeffi-
cients shown as values in each voxel as well as by voxel
colors. (b) Estimated extinction coefficients. A light source
and detector are above and blow the media. (c) Estimated
extinction coefficients. A light source and detector are left
and right sides of the media. (d) Average of (b) and (c).

Cost function values over iterations are shown in Figure
8 for each material. These curves show that the proposed
method effectively minimizes the objective function and
seems to work well for any kind of materials.

B. Complex materials

Simulation results with more complex materials are
shown in Figure 7. All materials are of size 10 ⇥ 10 but
have more complex distribution of extinction coefficients.
Estimated results are shown in the right column, made of
the averaging results of vertical and horizontal configura-
tions as in Fig. 4(d)

First material has four dense voxels apart from each
other (Fig. 7(c)). Because vertically (or horizontally)
aligned voxels affect to light paths, the estimated result
has a significant blur effect that makes the appearance of
the distribution a blurred faint rectangle instead of four
corners (7(b)). This is a limitation of the proposed method
currently, which must be improved in future.

Second material has dense voxels arranged in a U-shape
(Figure 7(c)). Nevertheless this has also a lot of vertically
or horizontally aligned voxels, the estimated result looks
reasonable (Figure 7(d)) in which we can see clearly the
U-shape is reconstructed. This result is quite promising,
while the values of four corners are much thinner than the
ground truth compared to voxels in between.
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Cost function values over iterations are shown in Figure
8 for each material. These curves show that the proposed
method effectively minimizes the objective function and
seems to work well for any kind of materials.

B. Complex materials

Simulation results with more complex materials are
shown in Figure 7. All materials are of size 10 ⇥ 10 but
have more complex distribution of extinction coefficients.
Estimated results are shown in the right column, made of
the averaging results of vertical and horizontal configura-
tions as in Fig. 4(d)

First material has four dense voxels apart from each
other (Fig. 7(c)). Because vertically (or horizontally)
aligned voxels affect to light paths, the estimated result
has a significant blur effect that makes the appearance of
the distribution a blurred faint rectangle instead of four
corners (7(b)). This is a limitation of the proposed method
currently, which must be improved in future.

Second material has dense voxels arranged in a U-shape
(Figure 7(c)). Nevertheless this has also a lot of vertically
or horizontally aligned voxels, the estimated result looks
reasonable (Figure 7(d)) in which we can see clearly the
U-shape is reconstructed. This result is quite promising,
while the values of four corners are much thinner than the
ground truth compared to voxels in between.
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in the middle and bottom rows, and the root-mean-squared error (RMSE) shown in Table 5 is small
enough with 0.0075/1.05 = 0.7% of coefficient values. The other media, shown in columns (b)–
(e), have more complex distributions of the extinction coefficients. In the top part of Table 5, we
use the RMSEs to show the quality of the estimated results. The ratio in the brackets shows the
relative magnitude of RMSE compared with the majority extinction value or the background in the
grountruth. Here, according to the groundtruth of material (a)–(e) in Fig. 7, we set this majority
extinction value to be 1.05.

In the bottom part of Table 5, we show the computation time for the numerical simulation with
different media and different Gaussian phase function. As we implement our proposed method on
Matlab, the further reduction of computation time can be expected by implementing on C++.

The values of the cost function f0 over iterations of the outer loop in Algorithm 3 are shown in
Figure 9 for each medium. These curves show that the proposed method effectively minimizes the
original objective function (31) and maintain the decsending tendency for many different kinds of
media. Figure 10 demonstrates how the log-barriered cost function f in Eq. (43) evolves over all
iterations of the inner loop; the number of iterations in the horizontal axis accumulates all inner
iterations of the Quasi-Newton method. We can see that each inner loop successively minimizes
the log-barriered function and the warm start (reusing the Hessian from the previous outer loop)
may help the gap of values between inner loops.
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much higher coefficients of 1.2 (voxels shaded in dark gray), which means that those voxels ab-
sorb much more light than other voxels. The coefficients are estimated reasonably well as shown
in the middle and bottom rows, and the root-mean-squared error (RMSE) shown in Table 1 is small
enough with the relative error of 0.0075/1.05 = 0.7% to the background coefficient value. The
other media, shown in columns (b)–(e), have more complex distributions of the extinction coeffi-
cients. We summarize the quality of the estimated results in terms of RMSE in Table 1. Numbers
in the brackets are relative errors of RMSE to the background extinction coefficient values (i.e.,
1.05). Computation time is also shown in Table 1. Note that the our proposed method has been
currently implemented with Matlab, which can be accelerated further by using C++.

The values of the cost function f0 over iterations of the outer loop in Algorithm 3 are shown in
Figure 9 for each medium. These curves show that the proposed method effectively minimizes the
original objective function (31) for the five media shown here and probably for other media. Figure
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of values between inner loops.
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in the middle and bottom rows, and the root-mean-squared error (RMSE) shown in Table 5 is small
enough with 0.0075/1.05 = 0.7% of coefficient values. The other media, shown in columns (b)–
(e), have more complex distributions of the extinction coefficients. In the top part of Table 5, we
use the RMSEs to show the quality of the estimated results. The ratio in the brackets shows the
relative magnitude of RMSE compared with the majority extinction value or the background in the
grountruth. Here, according to the groundtruth of material (a)–(e) in Fig. 7, we set this majority
extinction value to be 1.05.

In the bottom part of Table 5, we show the computation time for the numerical simulation with
different media and different Gaussian phase function. As we implement our proposed method on
Matlab, the further reduction of computation time can be expected by implementing on C++.

The values of the cost function f0 over iterations of the outer loop in Algorithm 3 are shown in
Figure 9 for each medium. These curves show that the proposed method effectively minimizes the
original objective function (31) and maintain the decsending tendency for many different kinds of
media. Figure 10 demonstrates how the log-barriered cost function f in Eq. (43) evolves over all
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much higher coefficients of 1.2 (voxels shaded in dark gray), which means that those voxels ab-
sorb much more light than other voxels. The coefficients are estimated reasonably well as shown
in the middle and bottom rows, and the root-mean-squared error (RMSE) shown in Table 1 is small
enough with the relative error of 0.0075/1.05 = 0.7% to the background coefficient value. The
other media, shown in columns (b)–(e), have more complex distributions of the extinction coeffi-
cients. We summarize the quality of the estimated results in terms of RMSE in Table 1. Numbers
in the brackets are relative errors of RMSE to the background extinction coefficient values (i.e.,
1.05). Computation time is also shown in Table 1. Note that the our proposed method has been
currently implemented with Matlab, which can be accelerated further by using C++.

The values of the cost function f0 over iterations of the outer loop in Algorithm 3 are shown in
Figure 9 for each medium. These curves show that the proposed method effectively minimizes the
original objective function (31) for the five media shown here and probably for other media. Figure
10 demonstrates how the log-barriered cost function f in Eq. (43) evolves over all iterations of the
inner loop; the number of iterations in the horizontal axis accumulates all inner iterations of the
Quasi-Newton method. We can see that each inner loop successively minimizes the log-barriered
function and the warm start (reusing the Hessian from the previous outer loop) may help the gap
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in the middle and bottom rows, and the root-mean-squared error (RMSE) shown in Table 5 is small
enough with 0.0075/1.05 = 0.7% of coefficient values. The other media, shown in columns (b)–
(e), have more complex distributions of the extinction coefficients. In the top part of Table 5, we
use the RMSEs to show the quality of the estimated results. The ratio in the brackets shows the
relative magnitude of RMSE compared with the majority extinction value or the background in the
grountruth. Here, according to the groundtruth of material (a)–(e) in Fig. 7, we set this majority
extinction value to be 1.05.

In the bottom part of Table 5, we show the computation time for the numerical simulation with
different media and different Gaussian phase function. As we implement our proposed method on
Matlab, the further reduction of computation time can be expected by implementing on C++.

The values of the cost function f0 over iterations of the outer loop in Algorithm 3 are shown in
Figure 9 for each medium. These curves show that the proposed method effectively minimizes the
original objective function (31) and maintain the decsending tendency for many different kinds of
media. Figure 10 demonstrates how the log-barriered cost function f in Eq. (43) evolves over all
iterations of the inner loop; the number of iterations in the horizontal axis accumulates all inner
iterations of the Quasi-Newton method. We can see that each inner loop successively minimizes
the log-barriered function and the warm start (reusing the Hessian from the previous outer loop)
may help the gap of values between inner loops.
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in the middle and bottom rows, and the root-mean-squared error (RMSE) shown in Table 1 is small
enough with the relative error of 0.0075/1.05 = 0.7% to the background coefficient value. The
other media, shown in columns (b)–(e), have more complex distributions of the extinction coeffi-
cients. We summarize the quality of the estimated results in terms of RMSE in Table 1. Numbers
in the brackets are relative errors of RMSE to the background extinction coefficient values (i.e.,
1.05). Computation time is also shown in Table 1. Note that the our proposed method has been
currently implemented with Matlab, which can be accelerated further by using C++.

The values of the cost function f0 over iterations of the outer loop in Algorithm 3 are shown in
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in the middle and bottom rows, and the root-mean-squared error (RMSE) shown in Table 5 is small
enough with 0.0075/1.05 = 0.7% of coefficient values. The other media, shown in columns (b)–
(e), have more complex distributions of the extinction coefficients. In the top part of Table 5, we
use the RMSEs to show the quality of the estimated results. The ratio in the brackets shows the
relative magnitude of RMSE compared with the majority extinction value or the background in the
grountruth. Here, according to the groundtruth of material (a)–(e) in Fig. 7, we set this majority
extinction value to be 1.05.

In the bottom part of Table 5, we show the computation time for the numerical simulation with
different media and different Gaussian phase function. As we implement our proposed method on
Matlab, the further reduction of computation time can be expected by implementing on C++.

The values of the cost function f0 over iterations of the outer loop in Algorithm 3 are shown in
Figure 9 for each medium. These curves show that the proposed method effectively minimizes the
original objective function (31) and maintain the decsending tendency for many different kinds of
media. Figure 10 demonstrates how the log-barriered cost function f in Eq. (43) evolves over all
iterations of the inner loop; the number of iterations in the horizontal axis accumulates all inner
iterations of the Quasi-Newton method. We can see that each inner loop successively minimizes
the log-barriered function and the warm start (reusing the Hessian from the previous outer loop)
may help the gap of values between inner loops.
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much higher coefficients of 1.2 (voxels shaded in dark gray), which means that those voxels ab-
sorb much more light than other voxels. The coefficients are estimated reasonably well as shown
in the middle and bottom rows, and the root-mean-squared error (RMSE) shown in Table 1 is small
enough with the relative error of 0.0075/1.05 = 0.7% to the background coefficient value. The
other media, shown in columns (b)–(e), have more complex distributions of the extinction coeffi-
cients. We summarize the quality of the estimated results in terms of RMSE in Table 1. Numbers
in the brackets are relative errors of RMSE to the background extinction coefficient values (i.e.,
1.05). Computation time is also shown in Table 1. Note that the our proposed method has been
currently implemented with Matlab, which can be accelerated further by using C++.

The values of the cost function f0 over iterations of the outer loop in Algorithm 3 are shown in
Figure 9 for each medium. These curves show that the proposed method effectively minimizes the
original objective function (31) for the five media shown here and probably for other media. Figure
10 demonstrates how the log-barriered cost function f in Eq. (43) evolves over all iterations of the
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in the middle and bottom rows, and the root-mean-squared error (RMSE) shown in Table 5 is small
enough with 0.0075/1.05 = 0.7% of coefficient values. The other media, shown in columns (b)–
(e), have more complex distributions of the extinction coefficients. In the top part of Table 5, we
use the RMSEs to show the quality of the estimated results. The ratio in the brackets shows the
relative magnitude of RMSE compared with the majority extinction value or the background in the
grountruth. Here, according to the groundtruth of material (a)–(e) in Fig. 7, we set this majority
extinction value to be 1.05.

In the bottom part of Table 5, we show the computation time for the numerical simulation with
different media and different Gaussian phase function. As we implement our proposed method on
Matlab, the further reduction of computation time can be expected by implementing on C++.
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enough with the relative error of 0.0075/1.05 = 0.7% to the background coefficient value. The
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cients. We summarize the quality of the estimated results in terms of RMSE in Table 1. Numbers
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Fig 11 Numerical simulation results for a grid of size 24 ⇥ 24 with different inverse solver. Darker shades of gray
represent larger values (more light is absorbed at the voxel). The graybar shows the preojetcion from gray scale to
value. First row shows the groundtruth of five different media (a)–(e) used for the simulation. Second row shows the
estimated results of our proposed. Third row shows the estimated results of DOT using an optimization method of
Gauss-Newton method with NOSER prior. The last row presents the simulation results of DOT using an inverse solver
of Primal-Dual Interior Point Method.

5.1 Comparison results

we compare with a standard DOT with FEM64, 65with different optimization methods implemented
in EIDORS.64, 65

The groundtruth used in the our proposed method and DOT are shown in the first row of Fig.11.
They are 24 [mm] ⇥ 24 [mm] mediums.

To fitting the change of the size of the medium, the parameters in Algorithm 3 were slightly
modified. For this special 2D layered medium, the grid size was set to N = M = 24 with square
voxels of size 1 [mm].

For DOT, we chose Gauss-Newton(GN) method coorperated with NOSER prior and the Primal-
Dual Interior Point Method(PDIPM) as the optimization methods.

Following description in section 3.5, we set the parameter of the Gaussian phase function to
be �2

= 0.4, as the shape of Gaussian phase function when �2
= 0.4 is relatively smooth. The

estimated result of Algorithm 3 is shown in the second row of Fig.11. And the estimated result
by Gauss-Newton methed is shown in the third row of Fig.11. The last row of Fig.11 shows the
simulation results of primal-dual interior point method. Comparing the three sets of results, it’s
obvious that Algorithm 3 correctly estimate the high extinction area. DOT obtained the results
which the high extinction area are larger than it in Algorithm 3 and groundtruth.
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Fig 11 Numerical simulation results for a grid of size 24 ⇥ 24 with our method and DOT with two solvers. Darker
shades of gray represent larger values (more light is absorbed at the voxel). The bars on the side shows extinction
coefficient values in greyscale. First row shows the ground truth of five different media (a)–(e) used for the simulation.
Second row shows the estimated results of our proposed. Third and fourth rows show estimated results of DOT by
using Guass-Newton (GN) and Primal-Dual internal point method (PD) solvers.

6 Conclusion with discussion

In this paper, we have proposed a path integral based approach to optical tomography for multi-
ple scattering in discretized participating media. Assuming the scattering coefficients and phase
function are known and uniform, the extinction coefficients at each voxel in a 2D layered medium
are estimated by using an interior point method. Numerical simulation examples are shown to
demonstrate that the proposed framework works better than DOT in the simplified experimental
setup while its computation cost needs to be reduced.

There are many directions for further research including: relaxing the assumption of 2D layered
scattering model to more realistic scattering with other phase functions, using paths generated by
Monte-Carlo based statistical methods, extending the formulation to a full 3D scattering model,
and solving the issues mentioned below.

Limitations: stability and uniqueness The current formulation presented in this paper esti-
mates only the extinction coefficients; the scattering coefficients and phase function parameters are
assume to be known and uniform. This is one of the limitations of the proposed method, however
a common limitation of optical tomography. It is known that the scattering and absorption coeffi-
cients can not be separated from stationary measurements of light intensity,34 and the solutions are
not unique. Also, given stationary measurements without angle information the problem becomes
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Accuracy and cost�

(a) (b) (c) (d) (e)

RMSE

Ours 0.007662 0.01244 0.026602 0.021442 0.051152
�2

= 0.4 (0.730%) (1.18%) (2.53%) (2.04%) (4.87%)
DOT (GN) 0.053037 0.060597 0.7605 0.059534 0.0855

(5.05%) (5.77%) (7.53%) (5.67%) (8.14%)
DOT (PD) 0.052466 0.0626 0.081081 0.066042 0.080798

(5.25%) (5.97%) (8.11%) (6.60%) (8.08%)

Computation
time [s]

Ours 257 217 382 306 504
�2

= 0.4

DOT (GN) 0.397 0.390 0.407 0.404 0.453

DOT (PD) 1.11 1.09 1.14 1.08 1.15

Table 2 RMSEs and computation time of the numerical simulations for five different media (a)–(e) with grid size of
24 ⇥ 24 with our proposed method and DOT with two solvers. Numbers in the brackets are relative errors of RMSE
to the background extinction coefficient values (i.e., 1.05).

5.1 Comparison results

We compare our method to a standard DOT with Finite Element Methods (FEM)64, 65 with different
optimization methods implemented in EIDORS.64, 65 The ground truth used in this comparison is
shown in the top row of Figure 11 (a) – (e); N = M = 24 medium of the size 24 [mm] 24 [mm]
with extinction coefficient distributions almost the same with Fig.7 (a) – (e).

For solving DOT by EIDORS, we used 24 x 24 x 2 = 1152 triangle meshes (i.e., each voxel
is divided into two triangle meshes), and for the boundary condition we placed 16 light sources
and detectors at the same interval around the material. We chose two solvers: primal-dual interior
point method (PD) and Gauss-Newton method (GN). We used �

t

0
= 0. as the initial guess for

both our method and EIDORS.
The estimated results by our method (�2

= 0.4) and DOT with GN and PD are shown in
Fig.11. Results of our proposed method are shown in the second row, which are similar to those in
the third row of Fig.7. The third row shows results of DOT with GN. This kind of blurred results
are typical DOT estimation due to its diffusion approximation. The last row shows results of DOT
with PD, which look better than DOT with GN, but still have a tendency of overestimation of high
coefficient value areas.

We summarize RMSE values and computation time of each method in Table .2 in the same
format with Table .1. RMSE values of our method are 2 to 5 times smaller than those of DOT, and
this demonstrates that our proposed method can achieve much more accurate results.

The current disadvantage is its large computation cost, an out method takes up to 1000 times
longer than DOT. Our future research therefore includes to reducing the computation cost by opti-
mizing the code with C++ and adopting other solvers.

21

GT

�

2 = 0.2

�

2 = 0.4
(a) (b) (c) (d) (e)

Fig 7 Numerical simulation results for a grid of size 20 ⇥ 20. Darker shades of gray represent larger values (more
light is absorbed at the voxel). The graybar shows the preojetcion from gray scale to value. The first row shows the
groundtruth of the five different media (a)–(e) used for the simulation. The second row shows the estimated results
when the �

2 in the Gaussian phase function equals to 0.2. The last row shows the estimated results when the �

2 = 0.4.

in the middle and bottom rows, and the root-mean-squared error (RMSE) shown in Table 5 is small
enough with 0.0075/1.05 = 0.7% of coefficient values. The other media, shown in columns (b)–
(e), have more complex distributions of the extinction coefficients. In the top part of Table 5, we
use the RMSEs to show the quality of the estimated results. The ratio in the brackets shows the
relative magnitude of RMSE compared with the majority extinction value or the background in the
grountruth. Here, according to the groundtruth of material (a)–(e) in Fig. 7, we set this majority
extinction value to be 1.05.

In the bottom part of Table 5, we show the computation time for the numerical simulation with
different media and different Gaussian phase function. As we implement our proposed method on
Matlab, the further reduction of computation time can be expected by implementing on C++.

The values of the cost function f0 over iterations of the outer loop in Algorithm 3 are shown in
Figure 9 for each medium. These curves show that the proposed method effectively minimizes the
original objective function (31) and maintain the decsending tendency for many different kinds of
media. Figure 10 demonstrates how the log-barriered cost function f in Eq. (43) evolves over all
iterations of the inner loop; the number of iterations in the horizontal axis accumulates all inner
iterations of the Quasi-Newton method. We can see that each inner loop successively minimizes
the log-barriered function and the warm start (reusing the Hessian from the previous outer loop)
may help the gap of values between inner loops.
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Fig 7 Numerical simulation results for a grid of size 20⇥20. Darker shades of gray represent larger values (more light
is absorbed at the voxel). The bars on the side shows extinction coefficient values in greyscale. The first row shows
the ground truth of the five different media (a)–(e) used for the simulation. The second and third rows show estimated
results for �2 = 0.2 and �2 = 0.4, respectively, of the Gaussian phase function.

much higher coefficients of 1.2 (voxels shaded in dark gray), which means that those voxels ab-
sorb much more light than other voxels. The coefficients are estimated reasonably well as shown
in the middle and bottom rows, and the root-mean-squared error (RMSE) shown in Table 1 is small
enough with the relative error of 0.0075/1.05 = 0.7% to the background coefficient value. The
other media, shown in columns (b)–(e), have more complex distributions of the extinction coeffi-
cients. We summarize the quality of the estimated results in terms of RMSE in Table 1. Numbers
in the brackets are relative errors of RMSE to the background extinction coefficient values (i.e.,
1.05). Computation time is also shown in Table 1. Note that the our proposed method has been
currently implemented with Matlab, which can be accelerated further by using C++.

The values of the cost function f0 over iterations of the outer loop in Algorithm 3 are shown in
Figure 9 for each medium. These curves show that the proposed method effectively minimizes the
original objective function (31) for the five media shown here and probably for other media. Figure
10 demonstrates how the log-barriered cost function f in Eq. (43) evolves over all iterations of the
inner loop; the number of iterations in the horizontal axis accumulates all inner iterations of the
Quasi-Newton method. We can see that each inner loop successively minimizes the log-barriered
function and the warm start (reusing the Hessian from the previous outer loop) may help the gap
of values between inner loops.
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in the middle and bottom rows, and the root-mean-squared error (RMSE) shown in Table 5 is small
enough with 0.0075/1.05 = 0.7% of coefficient values. The other media, shown in columns (b)–
(e), have more complex distributions of the extinction coefficients. In the top part of Table 5, we
use the RMSEs to show the quality of the estimated results. The ratio in the brackets shows the
relative magnitude of RMSE compared with the majority extinction value or the background in the
grountruth. Here, according to the groundtruth of material (a)–(e) in Fig. 7, we set this majority
extinction value to be 1.05.

In the bottom part of Table 5, we show the computation time for the numerical simulation with
different media and different Gaussian phase function. As we implement our proposed method on
Matlab, the further reduction of computation time can be expected by implementing on C++.

The values of the cost function f0 over iterations of the outer loop in Algorithm 3 are shown in
Figure 9 for each medium. These curves show that the proposed method effectively minimizes the
original objective function (31) and maintain the decsending tendency for many different kinds of
media. Figure 10 demonstrates how the log-barriered cost function f in Eq. (43) evolves over all
iterations of the inner loop; the number of iterations in the horizontal axis accumulates all inner
iterations of the Quasi-Newton method. We can see that each inner loop successively minimizes
the log-barriered function and the warm start (reusing the Hessian from the previous outer loop)
may help the gap of values between inner loops.
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