SM 14/15 – T4 Special Effects

LCC, MIERSI

Miguel Tavares Coimbra

Image Processing

6

Computer Graphics

110

Ray Harryhausen a.k.a. stop action animation

'Special Effects' can mean a lot of things

Today

- We will talk about image processing
- Computer graphics is in Lecture 8
- We will not talk about stop-action animation
 - But you should go and see "Jason and the Argonauts" anyway
 - http://www.rayharryhausen.com/

(Some) Pieces of the Puzzle

- Image creators (3D -> 2D)
 - Camera (Today)
 - Computer Graphics (T8)
- Image manipulators (2D -> 2D)
 Image Processing (Today)
- Image displays (2D -> ?)
 - 2D Screen
 - 3D Virtual Reality (T7)

How do we get 2D images of a real 3D world?

Pinhole Photography

Aepth of Held) output is 1.215

Lenses

Image Sensors

• Convert light into an electric charge

CCD (charge coupled device)

Higher dynamic range High uniformity

Lower noise

CMOS (complementary metal Oxide semiconductor) Lower voltage

Higher speed

Lower system complexity

What is Colour?

Sensing Colour

SM 14/15 – T4 - Special Effects

ORTO

Analog to Digital

The scene is:

- projected on a 2D plane,
- sampled on a regular grid, and each sample is
- quantized (rounded to the nearest integer)

f(i, j) =Quantize $\{f(i\Delta, j\Delta)\}$

Images as Matrices

- Each point is a pixel with amplitude:
 f(x,y)
- An image is a matrix with size N x M
- $M = [(0,0) (0,1) \dots [(1,0) (1,1) \dots]]$

. . .

Colour Space

- Colour space
 - Coordinate system
 - Subspace: One colour -> One point
- RGB is very popular

Manipulating Single Pixels

Pixel Manipulation

- Let's start simple
- I want to change a single Pixel.

f(X,Y) = MyNewValue

• Or, I can apply a transformation T to all pixels individually. g(x, y) = T[f(x, y)]

Negative

Colour Negative

Pseudocolour

Colour Slicing

U

Chroma Key

Digital Filters

Convolution with a Filter Matrix

- Simple way to process an image.
- Mask defines the processing function.
- Corresponds to a multiplication in frequency domain.

Depth of Field Blurring

Colour Edge Detectors

Advanced Processing

Optical Flow

Motion Quantification

X-Rate o Travoltaflow 3290

Structure from Motion

SM 14/15 – T4 - Special Effects

Mosaicing

Facial Detection and Recognition

Augmented Reality

SM 14/15 - T4 - Special Effects

Piotr Karasinski 2013/14

Crazy Stuff

That didn't really fit anywhere else...

Virtual Joystick

4 ? <

How do I do all this?

Platforms and Source Code

- Computer Vision DCC
 - Lecture notes
 - JAVA platform
 - Android platform

http://www.dcc.fc.up.pt/~mcoimbra/lectures/vc_1415.html

- OpenCV
 - Free to use, lots of algorithms, C
- Gonzalez & Woods book