SM 14/15 – T6 Sensing Technology

LCC, MIERSI

Miguel Tavares Coimbra

References

- Slides from Edward A. Lee & Sanjit Seshia, UC Berkeley, EECS 149 Fall 2013
 - Copyright © 2008-date, Edward A. Lee & SanjitA. Seshia, All rights reserved
- Pedro Brandão, Sistemas Embutidos, DCC/FCUP
 - https://moodle.up.pt/course/view.php?id=3162

SM 14/15 – T5 – Sensing Technology

HOLS

Quantifying Reality

Rain

Stress

Heart Rate

Muscle strength

Emotions

Wind

Fatigue

Body posture

SM 14/15 – T5 – Sensing Technology Ball Speed

Into a Digital World

I want to transform real variables into digital ones

Real-time, unobtrusively, in real situations, for long periods of time, with very high accuracy

Cyber-Physical Systems

Bridges between physical and cyber worlds

(More) Pieces of the Puzzle

- Input
 - Reality (cameras, microphones, sensors, mocap, controllers,...)
 - Synthetic (computer graphics, sound synthesis,...)
- Processing
 - Digital, Analogue
 - Transform data, generate new data
- Output
 - Video, audio, actuators

Sensors and Actuators – The Bridge between the Cyber and the Physical

Sensors:

- o Cameras
- o Accelerometers
- o Rate gyros
- o Strain gauges
- o Microphones
- o Magnetometers
- o Radar/Lidar
- o Chemical sensors
- o Pressure sensors
- o Switches

o ...

Actuators:

- Motor controllers
- o Solenoids
- o LEDs, lasers
- o LCD and plasma displays
- Loudspeakers
- o Switches
- o Valves
- o ...

Modeling Issues:

- o Physical dynamics
- o Noise
- o Bias
- o Sampling
- o Interactions

Source: Analog Devices

A Ride in the Google Self-Driving Car

10

H

4 ?

Sensor Components

Magnetometers

A very common type is the Hall Effect magnetometer.

Charge particles (electrons, 1) flow through a conductor (2) serving as a Hall sensor. Magnets (3) induce a magnetic field (4) that causes the charged particles to accumulate on one side of the Hall sensor, inducing a measurable voltage difference from top to bottom.

The four drawings at the right illustrate electron paths under different current and magnetic field polarities.

Image source: Wikipedia Commons

Edwin Hall discovered this effect in 1879.

Accelerometers

The most common design measures the distance between a plate fixed to the platform and one attached by a spring and damper. The measurement is typically done by measuring capacitance.

gravitational force displacement movable mass fixed frame acceleration measured

EECS 149/249A, UC Berkeley: 9

Uses:

- o Navigation
- o Orientation
- o Drop detection
- o Image stabilization
- o Airbag systems

Measuring tilt

Component of gravitational force in the direction of the accelerometer axis must equal the spring force:

$$Mg\sin(\theta) = k(p - x(t))$$

Given a measurement of x, you can solve for θ , up to an ambiguity of π .

Difficulties Using Accelerometers

- o Separating tilt from acceleration
- o Vibration
- o Nonlinearities in the spring or damper
- o Integrating twice to get position: Drift

$$p(t) = p(0) + \int_0^t v(\tau) d\tau,$$

$$v(t) = v(0) + \int_0^t x(\tau) d\tau.$$

Position is the integral of velocity, which is the integral of acceleration. Bias in the measurement of acceleration causes position estimate error to increase quadraticly.

Measuring Changes in Orientation: Gyroscopes

Optical gyros: Leverage the Sagnac effect, where a laser light is sent around a loop in opposite directions and the interference is measured. When the loop is rotating, the distance the light travels in one direction is smaller than the distance in the other. This shows up as a change in the interference.

Images from the Wikipedia Commons

Light Sensors

• Convert light into an electric charge

CCD (charge coupled device)

Higher dynamic range High uniformity

Lower noise

CMOS (complementary metal Oxide semiconductor) Lower voltage

Higher speed

Lower system complexity

Environmental Sensors

Case Study: UrbanSense @ Porto

UrbanSense Platform

Tânia Calçada, Daniel Moura

ORTO

Case Study: UrbanSense @ Porto

Sensors

UrbanSense includes 600 sensor units. Hererogeneous sets of sensors.

Air Pollution

- Azote Dioxide
 75 sensors (mobile and fixed)
- Ozone (O3)

75 sensors (mobile and fixed)
 Particles PM10

· 50 sensors (mobile and fixed)

Carbon Dioxide • 50 sensors (mobile and fixed)

Carbon Monoxide

50 sensors (mobile and fixed)

- GPS and Accelerometer
 500 sensors (mobile)
- OBD On Board Device

Wearable Sensors

Erik Topol, 2009

Case Study: Vital Responder Monitoring Stress Among First Responder Professionals

SM 14/15 – T5 – Sensing Technology

K

×

Electrocardiogram

VitalJacket[®] HWM

Electrocardiogram

RR Variability

ZEPHYR

EEG

EMG

SM 14/15 - T5 - Sensing Techn

U. PORTO

Very Famous

Person

.

Wearable EMG

0

Smartphone Sensing

Samsung S4

- Accelerometer
- Gyroscope
- Light
- Magnetic Field
- Atmospheric Pressure
- Proximity
- Temperature
- Humidity
- Sound Levels
- GPS

Life companion

8:02 PM

Thu, March

Swipe screen to unlock

Smartwatch Sensing

U. PORTO

Some fundamental concepts

Design Issues with Sensors

- o Calibration
 - Relating measurements to the physical phenomenon
 - Can dramatically increase manufacturing costs
- o Nonlinearity
 - Measurements may not be proportional to physical phenomenon
 - Correction may be required
 - Feedback can be used to keep operating point in the linear region
- o Sampling
 - Aliasing
 - Missed events
- o Noise
 - Analog signal conditioning
 - Digital filtering
 - Introduces latency

Analog to Digital

Aliasing

Picket fence receding into the distance will produce aliasing...

WHY?

Sampling frequency must be greater than $2u_{max}$

Quantization

- G number of levels
- m storage bits
- Round each value to its nearest level

Noise

- Noise is a distortion of the measured signal
- Every physical system has noise
- Various strategies:
 - Better sensors
 - Digital Filters
 - Restoration models

Processing

- Signal Processing
 - Analysis,
 interpretation,
 transformation of a signal
- Example
 - In order to measure temperature I 'process' the length of a volume of mercury

So what do I do with all this?

You do cool stuff of course...

Sounds controlled by gestures

EEG Generated Art

SM 14/10 - T5 - Senang Tahnalogy -

happn

Dating using GPS trajectories

Find the people you've crossed paths with

Download the app

Use CG to replay the coolest goal from your football match

Get Creative

What will you quantify?

Rain

Stress

Heart Rate

Muscle strength

Wind

Emotions

Fatigue

Body posture

SI Ball Speed

Sensing Technology