
LCC, MIERSI

SM 14/15 – T8

Computer Graphics and

Animation

Miguel Tavares Coimbra

(Some) Pieces of the Puzzle

• Image creators (3D -> 2D)

– Camera (T4)

– Computer Graphics (Today)

• Image manipulators (2D -> 2D)

– Image Processing (T4)

• Image displays (2D -> ?)

– 2D Screen

– 3D Virtual Reality (T7)

SM 14/15 – T8 - Computer Graphics

How do we get 2D images of

a real 3D world?

SM 14/15 – T8 - Computer Graphics

Camera Obscura, Gemma Frisius, 1544

SM 14/15 – T8 - Computer Graphics

How do we get 2D images of

a real synthetic 3D world?

SM 14/15 – T8 - Computer Graphics

transformation + shading + texture

+ blending

© pixar

Projected 3D World

SM 14/15 – T8 - Computer Graphics

wireframe

Rasterization

SM 14/15 – T8 - Computer Graphics

filling with colors

Shading

SM 14/15 – T8 - Computer Graphics

Varing the color values across the surface
(between vertices). Create the effect of light
shining on a red cube

Texture Mapping

SM 14/15 – T8 - Computer Graphics

A picture that we map to the surface of a
triangle or polygon. A texture can
simulate an effect that could take
thousands of triangles

Blending

SM 14/15 – T8 - Computer Graphics

Allows mixing different colors together.
e.g. create reflections

Basic steps for creating a 2D image

out of a 3D world

SM 14/15 – T8 - Computer Graphics

• Create the 3D world

– Vertexes and triangles in a 3D space

• Project it to a 2D ‘camera’

– Use perspective to transform coordinates into a

2D space

• Paint each pixel of the 2D image

– Rasterization, shading, texturing

– Will break this into smaller things later on

• Enjoy the super cool image you have created

Pipeline

. collision detection

. animation global
 acceleration
. physics simulation

process on CPU or GPU

. transformation

. projection

Computes:
. what is to be drawn
. how should be drawn
. where should be drawn

process on GPU

. draws images
generated by
geometry stage

process on GPU

SM 14/15 – T8 - Computer Graphics

Geometry

SM 14/15 – T8 - Computer Graphics

SM 14/15 – T8 - Computer Graphics

One possibility: Ray tracing

for each pixel {

 compute viewing ray

 intersect ray with scene

 compute illumination at visible point

 put result into image

 }

Adapted from Steve Marschner, Cornell University

Another one: Projection

SM 14/15 – T8 - Computer Graphics
Adapted from Steve Marschner, Cornell University

Ray tracing vs. Projection

• Viewing in ray tracing
– start with image point

– compute ray that projects to that point

– do this using geometry

• Viewing by projection
– start with 3D point

– compute image point that it projects to

– do this using transforms

• Inverse processes
– ray gen. computes the preimage of projection

SM 14/15 – T8 - Computer Graphics
Adapted from Steve Marschner, Cornell University

 Geometric objects are represented using vertices

 A vertex is a collection of generic attributes

 positional coordinates

 colors

 texture coordinates

 any other data associated with that point in space

 Position stored in 4 dimensional homogeneous
coordinates

 Vertex data must be stored in vertex buffer objects
(VBOs)

 VBOs must be stored in vertex array objects (VAOs)

Representing Geometric Objects

Slide by Ed Angel, Siggraph 2012

Pipeline of transformations

SM 14/15 – T8 - Computer Graphics
Adapted from Steve Marschner, Cornell University

SM 14/15 – T8 - Computer Graphics

Projections

Classical projections

SM 14/15 – T8 - Computer Graphics
Adapted from Steve Marschner, Cornell University

Parallel Projection

SM 14/15 – T8 - Computer Graphics
Adapted from Steve Marschner, Cornell University

Multiview orthographic

SM 14/15 – T8 - Computer Graphics
Adapted from Steve Marschner, Cornell University

View volume: Orthographic

SM 14/15 – T8 - Computer Graphics
Adapted from Steve Marschner, Cornell University

View volume: Perspective

SM 14/15 – T8 - Computer Graphics
Adapted from Steve Marschner, Cornell University

Field of view

– Angle between the rays corresponding to

opposite edges of a perspective image

– Determines ‘strength’ of perspective effects

SM 14/15 – T8 - Computer Graphics
Adapted from Steve Marschner, Cornell University

SM 14/15 – T8 - Computer Graphics

Adapted from Steve Marschner, Cornell University

SM 14/15 – T8 - Computer Graphics

Adapted from Steve Marschner, Cornell University

Orthographic projection

SM 14/15 – T8 - Computer Graphics
Adapted from Steve Marschner, Cornell University

What about the view volume?

SM 14/15 – T8 - Computer Graphics
Adapted from Steve Marschner, Cornell University

What about the z direction?

• Two clipping planes further constrain the

view volume

– Near plane: parallel to view plane; things

between it and the viewpoint will not be

rendered

– Far plane: also parallel; things behind it will

not be rendered

SM 14/15 – T8 - Computer Graphics
Adapted from Steve Marschner, Cornell University

Orthographic transformation chain

SM 14/15 – T8 - Computer Graphics
Adapted from Steve Marschner, Cornell University

View volume: Perspective (clipped)

SM 14/15 – T8 - Computer Graphics
Adapted from Steve Marschner, Cornell University

Perspective transformation chain

SM 14/15 – T8 - Computer Graphics
Adapted from Steve Marschner, Cornell University

Summary: Projection

• Different types of projection

– Orthographic

– Perspective

• Integrate nicely into the transformation

chain

• Other elements:

– Viewing transform

– Viewport transform

SM 14/15 – T8 - Computer Graphics

Rasterization

Basic steps for creating a 2D image

out of a 3D world

SM 14/15 – T8 - Computer Graphics

• Create the 3D world

– Vertexes and triangles in a 3D space

• Project it to a 2D ‘camera’

– Use perspective to transform coordinates into a

2D space

• Paint each pixel of the 2D image

– Rasterization, shading, texturing

– Will break this into smaller things later on

• Enjoy the super cool image you have created

SM 14/15 – T8 - Computer Graphics

Rasterization

rasterization:

wireframe

filling with
colors

SM 14/15 – T8 - Computer Graphics
Slide by Ron Fedkiw, Stanford University

Primitives

• Only three!

– Points

– Line segments

– Triangles

• How do I rasterize them?

– Points are simple

– Lines?

– Triangles?

SM 14/15 – T8 - Computer Graphics

Rasterizing lines

• Lines are defined by

two points

– Projected into my 2D

screen from my 3D

world

• Consider it a

rectangle

– So that it occupies a

non-zero area

SM 14/15 – T8 - Computer Graphics
Adapted from Steve Marschner, Cornell University

Bresenham lines (midpoint alg.)

• Idea:

– Define line width

parallel to pixel grid

• What does this

mean?

– Turn on the single

nearest pixel in each

column

SM 14/15 – T8 - Computer Graphics
Adapted from Steve Marschner, Cornell University

Interpolation along lines

• We don’t want to simply

know which pixels are

on the line

– Boolean

• Vertexes hold attributes

– Ex: Color

• We want these to vary

smoothly along the line

– Linear interpolation

SM 14/15 – T8 - Computer Graphics
Adapted from Steve Marschner, Cornell University

Rasterizing triangles

• Pixel belongs to the

triangle if its center is

inside the triangle

• Need two things:

– Which pixels belong to

the triangle?

– How do we interpolate

values from 3

vertexes?

SM 14/15 – T8 - Computer Graphics
Adapted from Ron Fedkiw, Stanford University

Using directed lines

• Point is inside the

triangle if it is on the

left of three directed

lines

– They could be on the

right too…

• How do we build a

simple test for this?

SM 14/15 – T8 - Computer Graphics
Adapted from Ron Fedkiw, Stanford University

Point inside triangle test

SM 14/15 – T8 - Computer Graphics
Adapted from Ron Fedkiw, Stanford University

Illumination

Basic steps for creating a 2D image

out of a 3D world

SM 14/15 – T8 - Computer Graphics

• Create the 3D world

– Vertexes and triangles in a 3D space

• Project it to a 2D ‘camera’

– Use perspective to transform coordinates into a

2D space

• Paint each pixel of the 2D image

– Rasterization, shading, texturing

– Will break this into smaller things later on

• Enjoy the super cool image you have created

Illumination: main concepts

 specular diffuse transparency

light sources emit light
. color spectrum

. position and direction

surfaces reflect light
. reflectance
. geometry

. transmission
. absortion

SM 14/15 – T8 - Computer Graphics

Illumination: main concepts

Illumination determined by the
interaction of the

light source + the surface

SM 14/15 – T8 - Computer Graphics

Illumination: types of lights

ambient directional point

light bulb sun
Indirect

illumination

SM 14/15 – T8 - Computer Graphics

How does light interact with a

surface?

Three types of interactions

SM 14/15 – T8 - Computer Graphics
Slide by Ron Fedkiw, Stanford University

SM 14/15 – T8 - Computer Graphics
Slide by Ron Fedkiw, Stanford University

Paint vs. Milk

Slide by Ron Fedkiw, Stanford University
SM 14/15 – T8 - Computer Graphics

The lighting equation

SM 14/15 – T8 - Computer Graphics
Slide by Ron Fedkiw, Stanford University

How to colour a pixel?

SM 14/15 – T8 - Computer Graphics
Slide by Ron Fedkiw, Stanford University

Irradiance

SM 14/15 – T8 - Computer Graphics
Slide by Ron Fedkiw, Stanford University

some basics you MUST know

day 1: Types of Lights

1. Ambient
2. Diffuse

3. Specular

4. Emissive: color of a surface adds intensity to the object, but is
unaffected by any light sources. Does not introduce any additional

light into the overall scene.

Images: http://xoax.net/comp/sci/graphics3D/BasLocIll.php

SM 14/15 – T8 - Computer Graphics

Ambient Light

ambient light

. light that doesn't come from any
direction

. objects are evenly lit on all surfaces in
all directions

SM 14/15 – T8 - Computer Graphics

ambient light

. has a source, but rays of light bounce
around the scene and become

directionless

ambient light source

 R G B

 .5 intensity .5 intensity .5 intensity

material "ambient" color (.5, 1, .5)

SM 14/15 – T8 - Computer Graphics

ambient light

. has a source, but rays of light bounce
around the scene and become

directionless

ambient light source

 R G B

 .5 intensity .5 intensity .5 intensity

material "ambient" color (.5, 1, .5)

how do you
calculate the
ambient color

component of an
object?

SM 14/15 – T8 - Computer Graphics

ambient light

. has a source, but rays of light bounce
around the scene and become

directionless

ambient light source

 R G B

 .5 intensity .5 intensity .5 intensity

material "ambient" color (.5, 1, .5)

 .5*.5=.25 .5*1=.5 .5*.5=.25

color vector

(R,G,B) = (.25, .5,

.25)

SM 14/15 – T8 - Computer Graphics

Diffuse illumination

how can we create a light model?

. (x,y,z): light source

. (): emition direction

. : light intensity

 I(x,y,z,)

SM 14/15 – T8 - Computer Graphics

how can we create a light model?

measuring irradiance at a plane
perpendicular to l tells us how bright the

light is in general

p

i

SM 14/15 – T8 - Computer Graphics

how can we create a light model?

Irradiance is proportional to
the density of the rays

Inversely proportional to the
distance d between the rays

meassures the density of the rays

d/cosd

Since irradiance is inversely
proportional to the distance d

it is proportional to cos 



n

SM 14/15 – T8 - Computer Graphics

Lambert's law

I = k I cos()
 = k I n·l

I : light source
intensity

k : surface reflectance
 coefficient in [0,1]

: light/normal angle

light

light

diffuse

light

d

d

SM 14/15 – T8 - Computer Graphics

Illumination: components

ambient + diffuse + specular = phong

reflection

phong

other: blinn-phong, lambert, gouraud,... SM 14/15 – T8 - Computer Graphics

Shading

flat shading (ambient)

SM 14/15 – T8 - Computer Graphics

gouraud (smooth) shading

4321

4321

nnnn

nnnn
n






–In OpenGL: glShadeModel(GL_SMOOTH)
SM 14/15 – T8 - Computer Graphics

phong (smooth) shading

    BA nnn   1

1. calculate the normals on the side of the
polygons by interpolating the vertex

normals

SM 14/15 – T8 - Computer Graphics

phong (smooth) shading

1. calculate the normals on the side of the
polygons by interpolating the vertex

normals

2. calculate the normals inside the
polygon

    DC nnn   1,

SM 14/15 – T8 - Computer Graphics

SM 14/15 – T8 - Computer Graphics
Slide by Ron Fedkiw, Stanford University

In a nutshell

• Calculate each primary color separately

• Start with global ambient light

• Add reflections from each light source

• Clamp to [0, 1]

SM 14/15 – T8 - Computer Graphics

Summary: Illumination

• Three main types of light:

– Ambient, Diffuse, Specular

• Illumination on a surface depends on the

irradiance angle with the normal

– Lambert shading model

• How can we calculate these normals?

– Flat shading, Gouraud shading, Phong

shading

SM 14/15 – T8 - Computer Graphics

Texture

SM 14/15 – T8 - Computer Graphics

SM 14/15 – T8 - Computer Graphics

Particle Systems

introduction

Particles systems what for?

solution to modeling amorphous, dynamic
and fluid objects like clouds, smoke,

water, explosions and fire.

SM 14/15 – T8 - Computer Graphics

Ron Fedkiw
Jeong-Mo Hong

How can we do it?

SM 14/15 – T8 - Computer Graphics

Pipeline

. collision detection

. animation global
 acceleration
. physics simulation

process on CPU or GPU

. transformation

. projection

Computes:
. what is to be drawn
. how should be drawn
. where should be drawn

process on GPU

. draws images
generated by
geometry stage

process on GPU

SM 14/15 – T8 - Computer Graphics

representing objects with particles

•An object is represented as clouds of primitive
particles that define its volume rather than by
polygons or patches that define its boundary

•A particle system is dynamic, particles changing
form and moving with the passage of time.

•Object is not deterministic, its shape and form are
not completely specified

SM 14/15 – T8 - Computer Graphics

Basic Model of Particle Systems

1) New particles are generated into the system

2) Each new particle is assigned its individual attributes

3) Any particle that has existed past its prescribed lifetime is

extinguished

4) The remaining particles are moved and transformed

according to their dynamic attributes

5) An image of the particles is rendered in the frame buffer,

often using special purpose algorithms.

SM 14/15 – T8 - Computer Graphics

Particle rendering

Particles can obscure other objects behind them, can be transparent,
and can cast shadows on other objects. The objects may be polygons,
curved surfaces, or other particles.

 SM 14/15 – T8 - Computer Graphics

Physics

Why do we need physics?

• How do objects move?

• How much energy do they have?

• How do they stop by themselves?

• How do they float?

• How do they fly?

And that only involves movement… (Heat?

Electricity? Wind? Light? Sound?)

SM 14/15 – T8 - Computer Graphics

Pipeline

. collision detection

. animation global
 acceleration
. physics simulation

process on CPU or GPU

. transformation

. projection

Computes:
. what is to be drawn
. how should be drawn
. where should be drawn

process on GPU

. draws images
generated by
geometry stage

process on GPU

SM 14/15 – T8 - Computer Graphics

Motion

The basic law

• Newton’s second law

• Force (N) equals mass (kg) times

acceleration (ms-2)

• Means that accelerating an object requires

an external force

• Also means that if we know this force,

mass, and initial conditions we can predict

object motion

SM 14/15 – T8 - Computer Graphics

𝐹 = 𝑚. 𝑎

Position and velocity

• If we know

acceleration

• We can integrate it

over time to obtain

velocity

• And integrate it again

to obtain position

We can predict motion!

SM 14/15 – T8 - Computer Graphics

𝑣 = 𝑎 . 𝑑𝑡
𝑡

𝑣 = 𝑣0 + 𝑎 . 𝑡

𝑥 = 𝑣 . 𝑑𝑡
𝑡

𝑥 = 𝑥0 + 𝑣0. 𝑡 +
1
2 𝑎 . 𝑡

2

Vectors

• Note that position, acceleration and

velocity are vectors

• Scalars are simpler…

• Use scalar versions of the equations for

each dimension

– x, y, z

• Separability makes things much simpler!

SM 14/15 – T8 - Computer Graphics

Example

• Break down the
vector equation
into its components
x and y

• Use them
independently

– Great for
calculating gravity
effects of
projectiles

 SM 14/15 – T8 - Computer Graphics

𝛼

y

x

𝑣0

𝑣 = 𝑣0 + 𝑎 . 𝑡

𝑣𝑥(𝑡) = 𝑣0𝑥 + 𝑎𝑥(𝑡). 𝑡

𝑣𝑦(𝑡) = 𝑣0𝑦 + 𝑎𝑦(𝑡). 𝑡

𝑣0𝑥 = 𝑣0 . cos 𝛼

𝑣0𝑦 = 𝑣0 . sin 𝛼

Projectile motion

• No force affects

horizontal axis

ax = 0

• Gravity affects vertical

axis

ay = g = -9,8 ms-2

• So:

SM 14/15 – T8 - Computer Graphics
Image adapted from www.wikipedia.org

𝑥 𝑡 = 𝑥0 + 𝑣0𝑥. 𝑡

𝑦 𝑡 = 𝑦0 + 𝑣0𝑦 . 𝑡 −
1
2 9,8. 𝑡

2

Engines

• How do I simulate an engine propelling an
object?

– I can use force if I know mass

– I can use acceleration directly

• More difficult than gravity

– Direction of acceleration is usually associated
with the direction of velocity

– Direction and magnitude of acceleration may be
influenced externally: brakes, steering wheel, etc.

• Can easily combine with gravity

SM 14/15 – T8 - Computer Graphics

Gravitational force

• Any two objects with
mass attract each other
– Newton’s law of

universal gravitation

• Direction of force
– Line containing the

centers of mass of the
two objects

• How come earth’s
gravitational pull is
constant then?
– It is not…

SM 14/15 – T8 - Computer Graphics
Image adapted from www.wikipedia.org

G = 6.674×10−11 N m2 kg−2

Warp speed

• Near the speed of light

– Mass increases with velocity

– Mass deforms space

– Things get messy

• What to do?

– Go read Stephen Hawking

– Cheat in your space combat simulation

SM 14/15 – T8 - Computer Graphics

Energy of moving objects

Kinetic energy

• Things in motion have energy

– Defined as the work needed to accelerate a

body of a given mass from rest to its stated

velocity

– Measured in joules

• Classic mechanics

– Kinetic energy of a non-rotating rigid body:

SM 14/15 – T8 - Computer Graphics

𝐸𝑘 =
1
2 𝑚𝑣

2

Potential energy

• Things not moving also have ‘potential’
energy

– Energy due to the position of the various
objects of a system

• Most common potential energy

– Gravity

– Higher objects have higher energy than lower
objects with the same mass

– Others: elastic, electric, magnetic

SM 14/15 – T8 - Computer Graphics

𝐸𝑝 = 𝑚.𝑔. ℎ

Conservation of energy

• Law of conservation of energy

– The total amount of energy in an isolated

system remains constant over time

• Isolated system

– Physical system without any external

exchange of matter or energy

• Great for approximating many real-world

situations!

SM 14/15 – T8 - Computer Graphics

Back to our projectiles

• Projectile going up

– Velocity decreasing –

lower kinetic energy

– Height increasing –

higher potential energy

• Projectile going down

– Vice-versa

• What about engines?

– External energy source

– Not an isolated system!

SM 14/15 – T8 - Computer Graphics
Image adapted from www.wikipedia.org

Object collision

• What happens when my projectile falls to the
ground?
– Law of conservation of energy

– No external forces were applied

– What happened to the kinetic energy?

• Ground must generate an opposing force that
stops the projectile
– Which could break or deform the ground…

• Energy is typically converted into heat
– Explaining why even a small asteroid falling on

earth can create a huge explosion…

SM 14/15 – T8 - Computer Graphics

Momentum

• What happens when two objects collide?

– All collisions conserve momentum

– Not all collisions conserve kinetic energy

• What is momentum?

– Product of mass and velocity of an object

– Conserved in a closed system

• The momentum of a system of particles is

the sum of their momenta

SM 14/15 – T8 - Computer Graphics

𝑝 = 𝑚. 𝑣

𝑝 = 𝑝1 + 𝑝2 = 𝑚1𝑣1 +𝑚2𝑣2

Elastic collisions

• Momentum is conserved

• Total kinetic energy is conserved

• Solvable system of equations

SM 14/15 – T8 - Computer Graphics
Images adapted from www.wikipedia.org

Inelastic collision

• Momentum is

conserved

• Kinetic energy is not

conserved

• Coefficient of

restitution

– Fractional value

representing the ratio

of speeds after and

before an impact

SM 14/15 – T8 - Computer Graphics
Images adapted from www.wikipedia.org

Why do moving objects stop?
(without collisions or brakes…)

Reason #1 - Friction

• Force resisting the relative
motion of solid surfaces in
contact

– Actually this is dry kinetic friction…

• Coulomb friction
𝐹𝑓 ≤ 𝜇𝐹𝑛

• Does not depend on velocity!

• Depends on the normal force
between two surfaces

SM 14/15 – T8 - Computer Graphics

Images adapted from www.wikipedia.org

Reason #2 - Drag

• Forces which act on a solid object in the

direction of the relative fluid flow

– Air resistance

– Fluid resistance

• Depends on velocity and the object’s

cross-sectional area

• More complex than friction

• Use simple models (Stokes’, Newton…)

SM 14/15 – T8 - Computer Graphics

Why do things float?

Buoyancy

• Archimedes’ principle
– A body immersed in a

fluid suffers an upward
force equal to the
weight of the fluid the
body displaces

• Objects float if they
are less dense than
the fluid they are in
– Can you model such

an object falling on a
fluid?

SM 14/15 – T8 - Computer Graphics
Images adapted from www.wikipedia.org

How do explosions work?

How can I model turbulence?

How do things fly?

Why do cars get lighter as

they go faster?

...

Go read about physics!

Physics in space? 

SM 14/15 – T8 - Computer Graphics http://youtu.be/o8TssbmY-GM

