
Sound and Music Computing:
Rhythm Analysis and  

Music Mashups

Matthew Davies
Sound and Music Computing Group

INESC TEC, Porto

Sistemas Multimedia, 28/04/15

About me
• PhD, Centre for Digital Music, QMUL, UK (2003-2007)

• Post-Doctoral Researcher

• QMUL (2007-2011)

• INESC (2011-2013, 2014-)

• AIST, Japan (2013)

• SMC Group - http://smc.inescporto.pt

• My website - http://telecom.inescporto.pt/~mdavies

http://smc.inescporto.pt
http://telecom.inescporto.pt/~mdavies

Sound and Music
Computing Group

• 11 Full-time researchers  
(Post-doc, PhD and Masters)

• Two Main Research areas

• Music Description

• Music Generation

• Particular expertise in analysis of musical rhythm

Research Motivation
• To extract musical information from audio signals…  

and then use it!

• Draws on many academic disciplines:

• Digital Signal Processing, Machine Learning,
Musicology, Physics, Mathematics, AI, Information
Retrieval, Psychoacoustics, Music Psychology,
Computer Science, etc…

• In particular for SMC: leverage high expertise in music
with high expertise in engineering / signal processing

What kinds of musical
information?

• We try to extract many things from the musical
audio signal:

• temporal/rhythmic: onsets, beats, metre,
structure

• harmonic: key signature, chords

• timbral: instruments

• higher-level attributes: mood, style, genre

Focus of today’s talk

• Demonstration of techniques to extract temporal
information from music signals

• Look at analysis in a bottom-up fashion

• Then apply music description for music
manipulation and interaction

Part I
MIR and Rhythm

Sonic Visualiser

• Free open source analysis and visualisation tool for
musical audio - www.sonicvisualiser.org

http://www.sonicvisualiser.org

Musical context

• onsets - start times of
note events

• tatum - fastest level

• beat - comfortable
tapping level

• downbeats - grouping
beats into bars

Musical overview

• onsets - start times of
note events

• tatum - fastest level

• beat - comfortable
tapping level

• downbeats - grouping
beats into bars

Basic approach:
onset detection

• Go from audio domain to time-frequency domain

• Use the Short-Time Fourier Transform (STFT)

• Make an onset detection function (ODF)

• Measure difference in STFT across small time
frames (e.g. 10-20ms)

• To obtain onset locations, “peak-pick” the ODF

Onset Example

Many different onset
detection functions

• We can make lots of
different onset detection
functions

• Using: energy, phase,
spectral difference,
emphasis on high
frequencies

Musical overview

• onsets - start times of
note events

• tatum - fastest level

• beats - comfortable
tapping level

• downbeats - grouping
beats into bars

What is beat tracking?
• Beat tracking is the computational task of getting a

computer to “tap it's foot” in time to music

• The aim is to reflect the innate human ability to
induce and follow a pulse in music

• We often to do this without thinking - it's easy,
right?

• But how do we make the computer  
“feel the beat”?

How is beat tracking done?

• In lots of ways!

• There are probably over 100 “different” beat
tracking algorithms out there

• Using: comb filters, autocorrelation, neural
networks, psychoacoustic models, dynamic
programming, particle filters, bayesian models,
etc, etc.

Basic approach

• Calculate an onset detection function

• emphasises locations of start times of events

• Estimate tempo by some periodicity analysis

• Determine the phase of the beats given the
periodicity

Graphical example

• Let's also look in Sonic Visualiser

• Transform audio to onset
detection function (ODF)

• Look for strongest beat
periodicity

• Find periodic peaks in ODF

• Playback beats with audio

Beat Example

How is beat tracking used?
• What are the main applications of beat trackers?

• In many music information retrieval (MIR)
research tasks: chord detection, structural
segmentation, finding cover-songs, music
transcription - analysis in musical time

• And in creative/performance applications: beat-
synchronous audio effects, automatic
accompaniment, automatic remixing, mashups -
synchronisation is very important

How do we evaluate beat
trackers?

• Subjectively

• By listening back to the beats mixed with the original
music signal

• what's good? what's bad?

• Objectively

• By marking up “ground truth” and comparing to beat
estimates

• what's good? what's bad?

Objective evaluation

• make tolerance windows around ground truth

• count number of correct beats (w/ continuity)

• allow different metrical interpretations (e.g. double/half
tempo)

How good are beat
trackers?

• The state of the art is very good for “easy” types of
music:

• rock/pop, (some) electronic dance music ->
steady tempo with strong percussive content

• It's not so good for jazz, folk, classical

• tempo variations, no drums, changes in metre

Part II
Basic Creative

Transformations

Towards creative use of mir
and rhythm

• Let’s explore some simple transformations

• First, do MIR analysis to extract beats and
downbeats

• Then, undertake transformations according to this
information

• i.e. only using knowledge of rhythm + metre

• knowing about the beat is critical for
synchronisation between different pieces of music

Beat and downbeat tracking

1 3 42 1 3 42 1 3 42 1 3 42 1 32

audio
signal

metrical
beats

….

• The “metrical beats” are the main representation
we’ll work with for these simply transformations

Beat Tracking

• We'll explore:

• scrambling the music in two different ways

• changing the rhythmic structure

• some automatic remixing

Beat Randomizer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

12 34 56 78 91011 121314 15 161718 19

audio
signal

beat
locations

random
beats

locations

Beat Randomizer with Metre
• Let's see if we can make the result of the “beat randomizer” a

bit more musical

• Instead of picking a totally random beat each time, we will try
to preserve the metrical structure by using downbeat
information

• This means we pick a random beat by chose the metrical
positions in order

• So, we pick a random first beat of each bar, then a random
second beat, etc.

• In this way the result is somehow less random

Beat Randomizer with Metre

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44 51 52 53

51 22 13 44 11 32 53 24 41 12 33 14 21 52 23 44 31 42 43

audio
signal

metrical
beats

random
metrical
beats

Beat Randomizer with Metre

• We can vary number of sub-divisions per beat,

• e.g. 2, 4 or 8

Beat Swinger
• Given the beat times we can use a time-stretching tool

to alter the rhythmic structure of the music

• Time-stretching alters the speed of the music without
changing the pitch

• To add swing-feel we modify the duration of 1/8th
notes (i.e. half-beats) in an alternating long-short
pattern

• e.g. we make the first 1/8th note 30% longer and the
second one 30% shorter

Beat Swinger
audio
signal

1/8th
note

locations

swung
beats

use
time-

stretching
longer longer longer

shortershorter

Beat Swinger
• To experiment more, we can modify how the beats

are sub-divided, and change the stretch factor, e.g.

• Best results are obtained through experimentation,
and finding the right metrical level to swing
(normally the fastest)

• But, we could do really weird things too

• reverse-swing feel at the beat level rather than
the 1/8th note level

Beat Swinger
• The beat swinger transformation is different from

the beat randomizer in two ways

• It's much slower to run :(

• Audio quality is worse :(

• Time-stretching is not perfect and can create some
artefacts

Beat remixer
• If we can modify the timing of beats in music - as

shown with the beat swinger, we can apply the
same principle for mixing songs together

• i.e. we can beat-match to make two songs have
the same tempo and be synchronised for
playback

• Instead of a straight beat-matching application,
we'll do something a bit different, built around the
beat randomizer as well

Beat remixer
• Given two input music files, we'll follow the  

“Beat Randomizer with Metre” process  
for each of them

• But then, also randomly switch between which
song we playback at each beat

• Making sure that we've time-stretched each the
beats to be at the same tempo

Beat Remixer

51 22 13 44 11 32 53 24 41 12 33 14 21 52 23 44 31 42 43

audio signal A

A B A B B A B B A A A B B A B A B B A

audio signal B

random song

random
metrical beats

Let's try to make an actual
remix

• The musicality of the results can be improved a lot by
imposing some higher level structure, and repeating the
sections we create

• So, let's make multiple short mixes and glue them together
to make some kind of structured remix

• As with the other functions we can provide some additional
input parameters to shape the result, e.g.

• the sub-beat level for randomizing beats

• the probability of choosing one song over another

Beat remixer perspectives
• It's not really a complete automatic remixing system

• But there's nice scope to vary the input files and
parameters as well as the higher level pattern
structure

• It just takes a little experimentation

• It would be much better to make something which
makes a more informed decision about how to mix
songs -> music mashups

Part IV
Music Mashups

AutoMashUpper

*Developed while at AIST, Japan in 2013

System Components

• “Mashability” - measure how well two sections fit
together

input
song

candidate
song

Mashability
via cosine
similarity

beatsbeats

input song with
phrase boundaries

beat-synchronous
chromagram

• Music signal analysis - phrase segmentation and
mashup signal representation

System Components

• User Interface  
allow users to interact with
mashup creation process 
and manipulate result

• Mashup creation - use time stretching and pitch
shifting to create the musical result

beat-match

input
song

section to use
in mashup

pitch-shift
(+2 semitones)

Beat tracking
• Critical first step in mashup system

• Enables temporal synchronisation between songs
• Underpins all subsequent analysis

• Estimate beat and downbeat locations
• assume approx. constant tempo and 4/4 time signature

1 3 42 1 3 42 1 3 42 1 3 42 1 32

audio
signal

metrical
structure

….

Beat-synchronous harmonic
representations

• AutoMashUpper uses two harmonic signal representations
• semitone spectrogram and chromagram

• Use beat information to make beat-synchronous versions

• Use NNLS chroma [Mauch, 2010] to extract chromagram and semitone spectrogram

audio frames

input
song

semitone
spectrogram

chromagram

Beat-synchronous harmonic
representations

• AutoMashUpper uses two harmonic signal representations
• semitone spectrogram and chromagram

• Use beat information to make beat-synchronous versions

semitone
spectrogram

chromagram

audio frames

beat
tracking

beat-synchronous semitone spectrogram

beat-synchronous chromagram
beat frames

input
song

• Use NNLS chroma [Mauch, 2010] to extract chromagram and semitone spectrogram

Phrase level segmentation
• Extract precise temporal boundaries between

phrases
• Assume phrase sections change on downbeats
• Expected phrase length ~ 8, 16, 32 beats

audio
signal

metrical
structure

phrase boundaries

beats1 3 42 1 3 42 1 3 42 1 3 42

Phrase level segmentation
• To find phrase boundaries, we

modify Foote’s classical approach
for structural segmentation based
on the self-similarity matrix  

• It is calculated by measuring the
distance between features in
every time frame to every other
time frame  

• We’re trying to find the
boundaries between the squares
along the main diagonal of the
self-similarity matrix

100 200 300 400 500 600

10

20

30

40

50

60

70

80

20 40 60 80 100 120 140

50

100

150

200

250

300

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140
0

0.02

0.04

0.06

0.08

0.1

0.12

100 200 300 400 500 600

10

20

30

40

50

60

70

80

20 40 60 80 100 120 140

50

100

150

200

250

300

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140
0

0.02

0.04

0.06

0.08

0.1

0.12

• Calculate a checkerboard
kernel

• Slide kernel along main
diagonal of self-similarity
matrix

• Calculate novelty function
to capture block changes

• Peaks of novelty function
give section boundaries

100 200 300 400 500 600

10

20

30

40

50

60

70

80

20 40 60 80 100 120 140

50

100

150

200

250

300

20 40 60 80 100 120 140

20

40

60

80

100

120

140

20 40 60 80 100 120 140
0

0.02

0.04

0.06

0.08

0.1

0.12

Phrase level segmentation

Mashability
• For each phrase section of input song,  

search for the “best match” in the user’s song library
• Estimate mashability between songs 
 
 
 
 
 
 
 
 

input
song

candidate
song

phrase section
(32 beats)

where is best
matching 32 beat

region in the
candidate song?

how could the
candidate song be
made to match the

input phrase section?

Mashability estimation
phrase section

(32 beats)
input song

beat-
synchronous
chromagram

cosine similarity matrix

beat increments

key
shifts

+3

-3
0

rotate input
chroma
to test

multiple
key shifts

0 +2+1-1-2 +3-3

measure
cosine similarity

across all beat
increments

of candidate
song for

all key shifts

candidate song
+3+2

Mashability estimation

• Repeat mashability estimation across all candidate songs
and rank maximum mashability score per song

• Search space is huge
• e.g. 7 key shifts x 500 beats = 3500 possible mashups

for one phrase section matched to one song, but
computation is acceptable (for up to 500 songs)

input
song

set of
candidate

songs +3

song A

song B

song C

song D

Mashup creation

• For each phrase section, the ranked mashability
tells us:
• which song to use in the mashup
• when in the song (starting beat)
• how to transform it to make the match (key shift)

• The final step is to create the mashup

Mashup creation

best
matching
section

original beats

time
stretching

target beats

pitch
shifting

apply key shift
(e.g. +2 semitones)

+2

loudness
adjustment

scale
amplitude

input
song

mix

Modes of operation
• AutoMashUpper can be customised to give

different musical results by changing the candidate
songs:
• Standard mode: full song library or pick ten

random
• Artist/album mode: only use songs from same

album
• Auto-slap bass: mashup input with solo slap

bass

Album Mode

Artist/Style Mode

Musician Mode

Real-time mashup

Real-time mashup:
DJ mode

Conclusions

• AutoMashUpper - assistive technology to help
users make music mashups
• interactivity is important

• Automatic approach to mashability can reveal
unknown relationships between songs

• Lots of ways to extend the original concept to allow
greater scope of musical creativity and interaction

62

