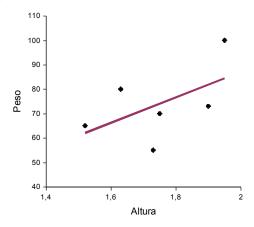
## Aula Prática 9


Docente: Miguel Tavares Coimbra Data: 02/12/2011

## 1. Knowledge representation

a. Consider the following table. Using a spreadsheet, create a 2D plot with these values.

| Individual  | 1    | 2    | 3    | 4    | 5    | 6    |  |
|-------------|------|------|------|------|------|------|--|
| Height (m)  | 1,75 | 1,90 | 1,52 | 1,63 | 1,95 | 1,73 |  |
| Weight (kg) | 70   | 73   | 65   | 80   | 100  | 55   |  |

b. By observing the plot, can you identify which people can be considered fat? Or thin?



- c. Formalize this 'pattern recognition' by creating a *Rule* (pair *conditionaction*) for each of these two situations.
- d. Apply your new rule to the previous individuals, by filling out the following table. (*Rule A: Fat / Not fat; Rule B: Thin/ Not thin*)

| Individual | 1 | 2 | 3 | 4 | 5 | 6 |
|------------|---|---|---|---|---|---|
| Rule A     |   |   |   |   |   |   |
| Rule B     |   |   |   |   |   |   |

e. Consider this new table. Mentally classify each individual as either *fat, thin* or *normal*. Apply the rules created in question c). Are results similar?

| Individual                      | 7    | 8    | 9    | 10   |
|---------------------------------|------|------|------|------|
| Height (m)                      | 1,72 | 2,05 | 1,67 | 1,82 |
| Weight (kg)                     | 85   | 95   | 65   | 61   |
| Manual classification           |      |      |      |      |
| <b>Automatic classification</b> |      |      |      |      |

## 2. Statistical Pattern Recognition

a. Consider that you have created an algorithm that segments circular objects from a black and white image. Your goal is to identify if these circles correspond to dark or light balls. By manually classifying the various images you have obtained the following results:

| Dark balls         | 1  | 2  | 3   | 4  | 5   | 6   | 7  | 8   | 9  | 10 |
|--------------------|----|----|-----|----|-----|-----|----|-----|----|----|
| Average luminosity | 10 | 55 | 152 | 34 | 175 | 101 | 77 | 163 | 44 | 95 |

| Light balls        | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|--------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Average luminosity | 230 | 243 | 180 | 134 | 244 | 153 | 180 | 175 | 220 | 215 |

b. Calculate the mean and standard deviation of the luminosity distribution for each class.

| Class          | Mean | Standard-deviation |
|----------------|------|--------------------|
| A: Dark balls  |      |                    |
| B: Light balls |      |                    |

c. Assume that each class has a Gaussian distribution. Use the *probability density function* to decide if: "the ball is dark" or "the ball is light" for the new set of balls described in the table below.

$$Gauss_{pdf} = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

| Balls              | 1  | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9  | 10  |
|--------------------|----|-----|-----|-----|-----|-----|-----|-----|----|-----|
| Average luminosity | 90 | 145 | 133 | 132 | 146 | 223 | 252 | 204 | 78 | 195 |
| Decision           |    |     |     |     |     |     |     |     |    |     |

d. The correct result is described on the table below. (*L-Light, D-Dark*). Compare this to the results of your automatic classifier and estimate the *accuracy* of the results.

$$Accuracy = \frac{Nr.Correct Classifications}{Nr.Total Classifications}$$

## 3. Machine learning

a. In order to learn more about some of these methods, read the excellent tutorials from this repository: <a href="http://www.autonlab.org/tutorials/">http://www.autonlab.org/tutorials/</a>