Tracking

Wednesday, April 27
Kristen Grauman
UT-Austin




Gmail motion™

A new way to communicate

The mouse and keyboard were invented before the Internet even existed. Since then, countless technological advancements have allowed for much more efficient
human computer interaction. Why then do we continue to use outdated technology? Introducing Gmail Motion -- now you can control Gmail with your body.

Try Gmail Motion

Don't have Gmail? Create an account

Easy to learn

123

Paul McDonald Simple and intuitive gestures
Product Manager, Gmail

Improved productivity
In and out of your email up to 12% faster

. Increased physical activity

Get out of that chair and start moving today
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Overview Paralanguage expert Movement specialist

How it works

Gmail Motion uses your computer's built-in webcam and Google's patented
spatial tracking technology to detect your movements and translate them into
meaningful characters and commands. Movements are designed to be simple
and intuitive for people of all skill levels.




G0ugle docs Motion &™

A new way to collaborate
Coming soon! Google Docs Motion =™ will introduce a new way to collaborate — using your body:

Gesture recognition Emotion detection Intuitive
Over 10.000 supported gestures Writing tone corresponds with emotions Start being more productive in a few minutes

s Documents T Spreadsheets | @ Presentations ¢ Drawings | @ Document list

Documents

Collaborate in real time using Google Docs Motion =™ Building on the technology
developed for Gmail Motion *™ multiple computers can triangulate position to
track each collaborator's inputs. Every feature will be supported, from brand new
discussions to formatting, tables and translation.

Work together on business proposals

Spreadsheets

What do you get when you combine motion and Google spreadsheets? An
incredible new way to create charts, add data, filter and work together. Docs
Motion now makes it easy to adjust the look and feel of your charts. Pie charts are
easy to make.




Depth map—sequence -' Motion History Image

Nearest neighbor action classification with
Motion History Images + Hu moments
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Normalized Euclidean distance
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Normalize according to variance in each dimension

What does this do for our distance computation?
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L eave-one-out cross validation

« Cycle through data points, treating each one as
the “test” case in turn, and training with the
remaining labeled examples.

* Report results over all such test cases



Outline

* Today: Tracking
— Tracking as inference
— Linear models of dynamics
— Kalman filters
— General challenges in tracking



Tracklng some applications

- N f-

Body pose tracking, Censusing a bat Video-baéed
activity recognition population

interfaces

Medical apps Surveillance
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Why is tracking challenging?



Optical flow for tracking?

If we have more than just a pair of frames, we could
compute flow from one to the next:

But flow only reliable for small motions, and we may have

occlusions, textureless regions that yield bad estimates
anyway...



Motion estimation techniques

 Direct methods

* Directly recover image motion at each pixel from spatio-temporal
Image brightness variations

* Dense motion fields, but sensitive to appearance variations
« Suitable for video and when image motion is small

 Feature-based methods

« Extract visual features (corners, textured areas) and track them
over multiple frames

« Sparse motion fields, but more robust tracking
« Suitable when image motion is large (10s of pixels)



Feature-based matching for motion

Best matching

Interesting point neighborhood

Time t Time t+1

/7 Search
1 window

¥)
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Image I2
;_Search window is centered at the point
- where we last saw the feature, in image I1.

Best match = position where we have the
highest normalized cross-correlation value.
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Example: A Camera Mouse

Video interface: use feature tracking as mouse
replacement

« User clicks on the feature to
be tracked

« Take the 15x15 pixel square
of the feature

* In the next image do a
search to find the 15x15 region
with the highest correlation
 Move the mouse pointer
accordingly

* Repeat in the background
every 1/30th of a second

James Gips and Margrit Betke
http://www.bc.edu/schools/csom/eagleeyes/ Kristen Grauman



Example: A Camera Mouse

Specialized software for communication, games

James Gips and Margrit Betke
http://www.bc.edu/schools/csom/eagleeyes/
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A Camera Mouse

Specialized software for communication, games
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James Gips and Margrit Betke
http://www.bc.edu/schools/csom/eagleeyes/
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Feature-based matching for motion

* For a discrete matching search, what are the
tradeoffs of the chosen search window size?

* Which patches to track?

» Select interest points — e.g. corners

* Where should the search window be placed?

* Near match at previous frame

* More generally, taking into account the expected
dynamics of the object

Kristen Grauman



Detection vs. tracking
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Detection vs. tracking

Detection: We detect the object independently in
each frame and can record its position over time,
e.g., based on blob’s centroid or detection

window coordinates
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Detection vs. tracking

Tracking with dynamics: We use image
measurements to estimate position of object, but
also incorporate position predicted by dynamics,
l.e., our expectation of object’s motion pattern.

Kristen Grauman



Detection vs. tracking

Tracking with dynamics: We use image
measurements to estimate position of object, but
also incorporate position predicted by dynamics,
l.e., our expectation of object’s motion pattern.
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Tracking with dynamics

« Use model of expected motion to predict where
objects will occur in next frame, even before seeing

the image.

* Intent:
— Do less work looking for the object, restrict the search.

— Get improved estimates since measurement noise is
tempered by smoothness, dynamics priors.
« Assumption: continuous motion patterns:
— Camera is not moving instantly to new viewpoint

— Objects do not disappear and reappear in different
places in the scene

— Gradual change in pose between camera and scene

Kristen Grauman



Tracking as inference

* The hidden state consists of the true parameters
we care about, denoted X.

 The measurement is our noisy observation that
results from the underlying state, denoted Y.

» At each time step, state changes (from X, to X,)
and we get a new observation Y..

Kristen Grauman



State vs. observation

w_J
State variabl
7

Hidden state : parameters of interest
Measurement : what we get to directly observe
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Tracking as inference

The hidden state consists of the true parameters
we care about, denoted X.

The measurement is our noisy observation that
results from the underlying state, denoted Y.

At each time step, state changes (from X, to X,)
and we get a new observation Y..

Our goal: recover most likely state X, given
— All observations seen so far.
— Knowledge about dynamics of state transitions.

Kristen Grauman



Tracking as inference: intuition

Belief

Measurement

Corrected prediction
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Tracking as inference: intuition
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Independence assumptions

* Only immediate past state influences current state

P(x,|X,.....X, )=|P(x|X, )

> -1

dynamics model
 Measurement at time t depends on current state

P(Y|X,.Y, ... X, Y. X, )= P(Y) X,)

) —1°

observation model
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Tracking as inference

* Prediction:

— Given the measurements we have seen up to
this point, what state should we predict?

P(X [y,»...

 Correction:

9yt—l)

— Now given the current measurement, what

state should we predi

PX | yys- -

2

)
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Questions

How to represent the known dynamics that govern the
changes in the states?

How to represent relationship between state and
measurements, plus our uncertainty in the measurements?

How to compute each cycle of updates?

Representation: We'll consider the class of linear
dynamic models, with associated Gaussian pdfs.

Updates: via the Kalman filter.

Kristen Grauman



Notation reminder
X~ N(ua Z)

« Random variable with Gaussian probability
distribution that has the mean vector g and
covariance matrix .

« X and g are d-dimensional, Zis d x d.
a=2 ad=1

CIfxis 1-d, we
. just have one
. 2 parameter -
. i 2> the
.. | variance: 0?
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Linear dynamic model

* Describe the a priori knowledge about

— System dynamics model: represents evolution
of state over time.

- NP E,)

nx1 nxn nxA1

— Measurement model. at every time step we
get a noisy measurement of the state.

o NG

m x 1 mxn nx1
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Example: randomly

~ N(Dx_:X
drifting points X, ~N(Dx,_;X,)

« Consider a stationary object, with state as position

* Position is constant, only motion due to random
noise term.

« State evolution is described by identity matrix D=1




Example: Constant

velocity (1D points) ®

1 d position

- measurements !
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time >
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Example: Constant X, ~NDx,_;;X,)
velocity (1D points) y, ~NMx;X,)

« State vector: position p and velocity v

|:pt:| pt =
X, =
vz

x, =D.x, , +noise =

 Measurement is position only

v, = Mx, + noise =
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Questions

How to represent the known dynamics that govern the
changes in the states?

How to represent relationship between state and
measurements, plus our uncertainty in the measurements?

How to compute each cycle of updates?

Representation: We'll consider the class of linear
dynamic models, with associated Gaussian pdfs.

Updates: via the Kalman filter.
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The Kalman filter

* Method for tracking linear dynamical models in
Gaussian noise

* The predicted/corrected state distributions are
Gaussian
— Only need to maintain the mean and covariance
— The calculations are easy

Kristen Grauman



Kalman filter

Know corrected state _ Know prediction of
from previous time step, Receive state, and next
and all measurements up measurement measurement >
to the current one > Update distribution over
Predict distribution over current state.
next state.
Time update Measurement update
(“Predict”) (“Correct”)
P\X \v,,...,
( t‘J/O yt—l) P(Xt‘yoa--'ayt)
Mean apd std. dev. Time advances: t++ Mean and std. dev.
of predicted state: of corrected state:
— — + +
H >0, H >0,
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1D Kalman filter: Prediction

Have linear dynamic model defining predicted state
evolution, with noise

X, ~ N(dxt O )
Want to estimate predicted distribution for next state
(X ‘y()a o Vi 1) (:Ut ,(0,) )
Update the mean:
p, =du

Update the variance:

(0,) =0, +(do/,)’

Lana Lazebnik



1D Kalman filter: Correction

Have linear model defining the mapping of state
to measurements:

K~N(mxt,0'f,l)

Want to estimate corrected distribution given

latest meas.: P(Xt‘yo,,,,,yt)zN(,U:,(Uj)z)

Update the mean: ) N2
P . Mo, +my (o))

H, = _
T elemi(e,)

Update the variance:

2 —\ 2
(0;)2 _ 2Gm (ft ) .
c,+m (o)

Lana Lazebnik




Prediction vs. correction

— 2 —\2 2 —\2
+_1th Gm_l_myt(at) ( +)2_ Gm(at)
Mo = o° +nf12(0_)2 ° o° +mz(0_)2
m t m t

4

* What if there is no prediction uncertainty (o, =0)?
— 2
:u;r = H, (G;L) =0

The measurement is ignored!

« What if there is no measurement uncertainty (o, =0)?
+ y +\2
H, = = (Gt ) =0
m

The prediction is ignored!

Lana Lazebnik



Constant velocity model
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Kalman filter processing
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Constant velocity model
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Kalman filter processing
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Constant velocity model

30 T T T T

Kalman filter processing

o state
25

X measurement

20" * predicted mean estimate
+ corrected mean estimate

bars: variance estimates
before and after measurements

position

time

Time t+1
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Constant velocity model
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Kalman filter processing
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Censusing natural populations of bats is important for understanding the October 2007

ecological and economic impact of these animals on terrestrial ecosystems. - EcoTracker 2.1 posted

Colonies of Brazilian free-tailed bats (Tadarids brasiliensis) are of particular under Investigator

interest because they represent some of the largest agagregations of mammals Intranet

known to mankind. It is challenging to census these bats accurately, since they

emerge in large numbers at night from their day-time roosting sites. We have July 2007

used infrared thermal cameras to record Brazilian free-tailed bats in California, - Redesigned Website

Massachusetts, New Mexico, and Texas. We have developed an automated posted

image analysis system that detects, tracks, and counts the emerging bats. - EcoTracker 2.0 posted
under Investigator
Intranet

Research Team - Video of EcoTracker in

------------------------------------------------------------------------------------ use

June 2007
CVPR Paper
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Maragrit Betke Cutler Cleveland Thomas Kunz Stan Sclaroff

s Thomas G. Hallam, University of Tennessee

» Nicholas C. Makris, Massachusetts Institute of Technology

= Gary F. McCracken, University of Tennesses

/Iwww.cs.bu.edu/~betke/research/bats/

John K. Westbrook, US Department of Agriculture

Students and Postdocs

http

L. Allen, A, Bagchi, 5. Crampton, D.E. Hirsh, J. Horn, N.I. Hristov, E. Immermann,
E.Y. Lee, M. Procopio, 1. Reichard, 5. Tang
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A bat census

http://www.cs.bu.edu/~betke/research/bats/
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Video synopsis

 http://www.vision.huji.ac.il/video-synopsis/

SEleck swiopes CAMERA IN STUTTGART AIRPORT (SEE 24 HOURS IN 20 SECONDS!)

below

Typical Video Stream (24 Hours) Synopsis with Less Collisions Synopsis with More Collisions

dutigart 2007 -04-1 6 145545 Stuttgan 2007-04-06 1 2:31 Stuttaart 2007-04-056 00441 E
B — = : ¥ | T
= ! !
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Tracking: issues

* Initialization
— Often done manually

— Background subtraction, detection can also be used

« Data association, multiple tracked objects

— Qcclusions, clutter



Tracking: issues

* Initialization
— Often done manually

— Background subtraction, detection can also be used

- Data association, multiple tracked objects

— Qcclusions, clutter




Tracking: issues

* Initialization
— Often done manually

— Background subtraction, detection can also be used

« Data association, multiple tracked objects

— Qcclusions, clutter

 Deformable and articulated objects



Recall:
tracking via deformable contours

1. Use final contour/model extracted at frame ¢t as
an initial solution for frame t+1
2. Evolve initial contour to fit exact object boundary

at frame t+1
3. Repeat, initializing with most recent frame.

Visual Dynamics Group, Dept. Engineering Science, University of Oxford.



http://www.robots.ox.ac.uk/~vdg/~vdg/

Tracking: issues

Initialization
— Often done manually

— Background subtraction, detection can also be used

Data association, multiple tracked objects

— Qcclusions, clutter
Deformable and articulated objects

Constructing accurate models of dynamics

— E.g., Fitting parameters for a linear dynamics model

Drift

— Accumulation of errors over time



Drift

P EETEER r}ilhikklk lk

D. Ramanan, D. Forsyth, and A. Zisserman. Tracking People by Learning their
Appearance. PAMI 2007.



http://www.ics.uci.edu/~dramanan/papers/trackingpeople/index.html
http://www.ics.uci.edu/~dramanan/papers/trackingpeople/index.html

Summary

Tracking as inference

— Goal: estimate posterior of object position given
measurement

Linear models of dynamics

— Represent state evolution and measurement
models

Kalman filters

— Recursive prediction/correction updates to refine
measurement

General tracking challenges



