VC 12/13 – T12 Optical Flow

Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos

Miguel Tavares Coimbra

Outline

- Optical Flow Constraint Equation
- Aperture problem.
- The Lucas & Kanade Algorithm

Acknowledgements: Most of this course is based on the excellent courses offered by Prof. Shree Nayar at Columbia University, USA and by Prof. Srinivasa Narasimhan at CMU, USA. Please acknowledge the original source when reusing these slides for academic purposes.

Topic: Optical Flow Constraint Equation

- Optical Flow Constraint Equation
- Aperture problem.
- The Lucas & Kanade Algorithm

Optical Flow and Motion

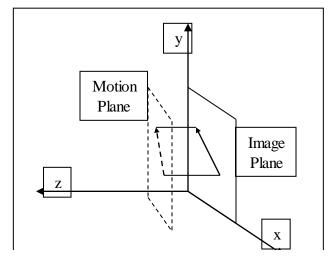
• We are interested in finding the movement of scene objects from time-varying images (videos).

Lots of uses

- Track object behavior
- Correct for camera jitter (stabilization)
- Align images (mosaics)
- 3D shape reconstruction
- Special effects

				~ ~	I	
	•					
	-					
· ·	•				مرجرم مرم	
· -	· -					
-	· · · · · · · · · · · · · · · · · · ·					
			· · · ·			
	د مرمر مرمر	· · · · · ·			ا مرمن مرمره مرمز مرمزه	
_	المرمر والمرمر		· · · ·		بربر مرمر. با مرمر مرمر	
				~~		~~~~
	المرجع المرجع المرجع	مرمر مربر	i di persona di seconda			
	المسترد بالمالي مراجع					
والمراجع المرجعين	المراجعة المرجوعي المرجعين	المراجرة المتعرفرات		~ ~ ~	and a second	
المرجب المشكر	المن الربرد مرمر	مرمر مرمر	1.1			-
، مرمر المعر		الرامرد المرمرد		, , , , , , , , , , , , , , , , , , ,	· · •	
. مر مر	and the second secon	المرميرة المرمر	1111		· ~	· · ·
	and the second secon	سرمرمر مرمر			~ ~	-
	المرموم الارمر المرمومين	المرمر المحام مرمز المام	a ser a construction de la construcción de la construcción de la construcción de la construcción de la construc			
<i>~</i> -	المرجوع والالان المرجوع ال	المعرو والالالة مرور الم			~ ~ ~	
·	الم المرجوح المحموص		د المرجز من	e en		
	and the second			· -		
	والمراجرها المرجر المرجومة		· · · · · · ·			
~ ~~~	والراجر مستراجا والمترجر المسترجين					
	a a a mara ara a	~~ · · ·	• •			
	-					1.1.1.2.2
	• •					
			• •			
			•			
					~~~	~
					······································	
					· · · · ·	

••••


~~~ · · · · ·

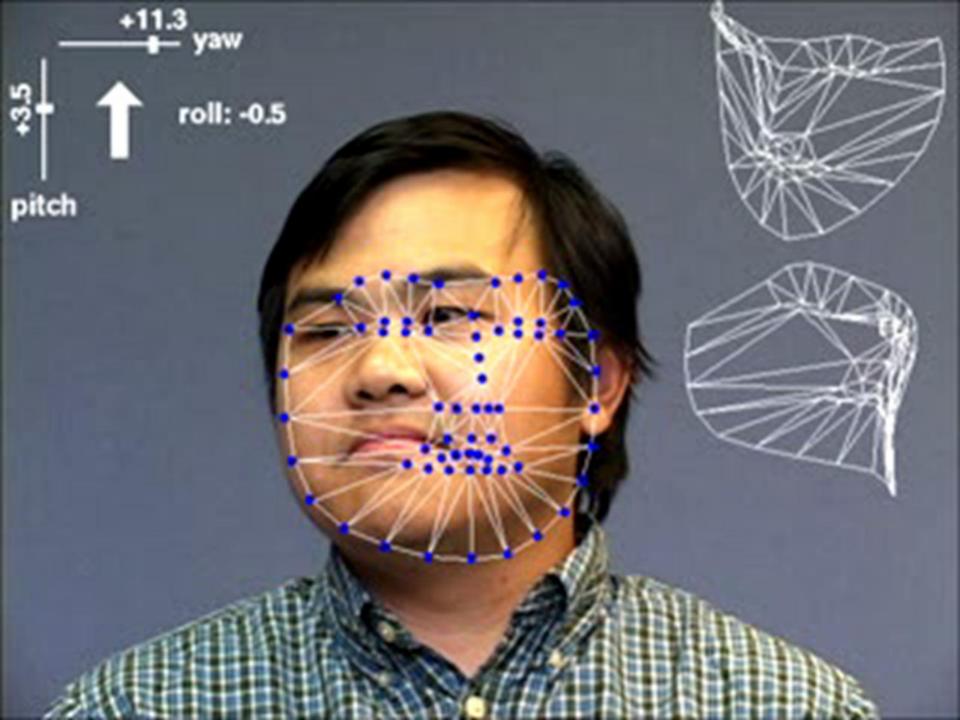
Lucas & Kanade Optical Flow method

Optical Flow – What is that?

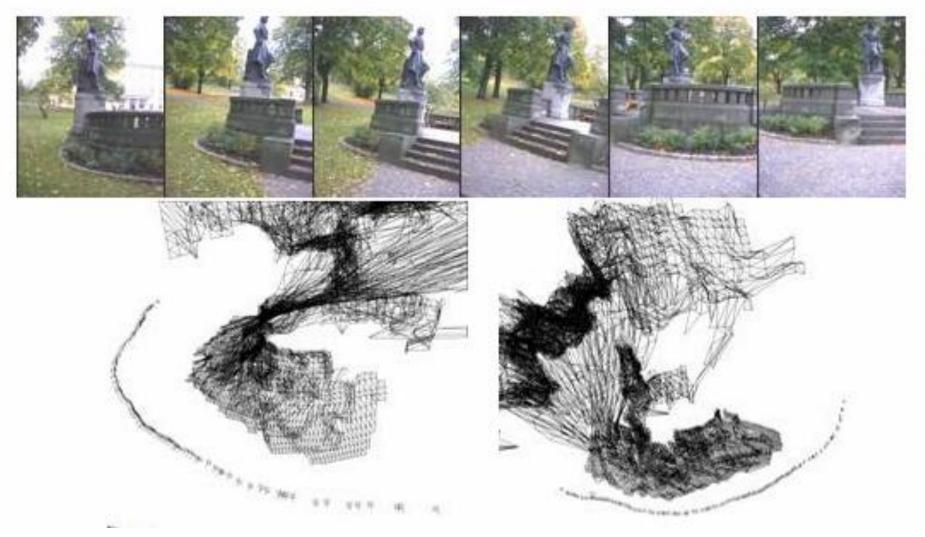
Optical flow is "the distribution of apparent velocities of movement of brightness patterns in an image" – Horn and Schunck 1980

The optical flow field approximates the true motion field which is a "purely geometrical concept..., it is the [2D] projection into the image [plane] of [the sequence's] 3D motion vectors" – Horn and Schunk 1993

What can i use it for?

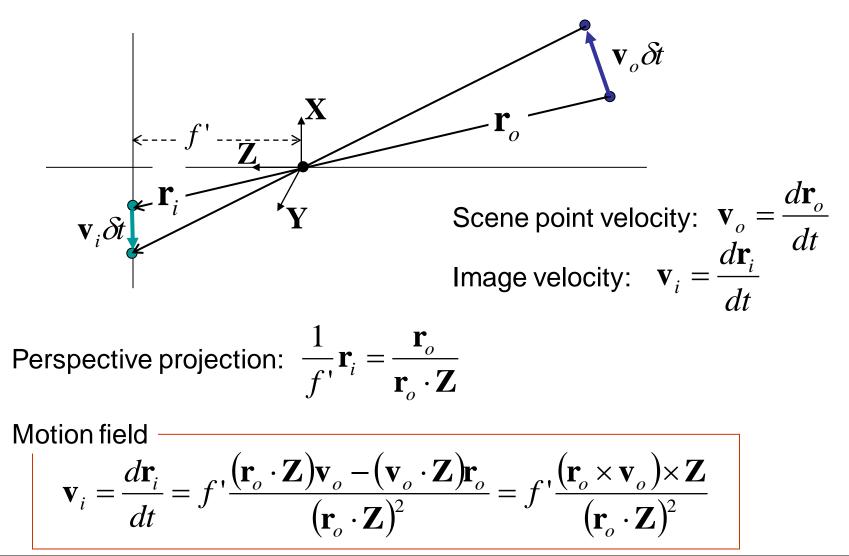

Tracking Rigid Objects

(Simon Baker, CMU)

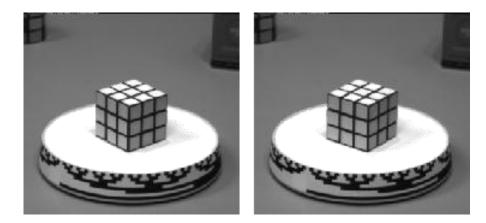


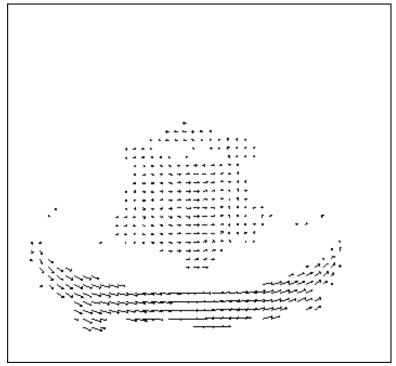
Tracking – Non-rigid Objects

(Comaniciu et al, Siemens)


3D Structure from Motion

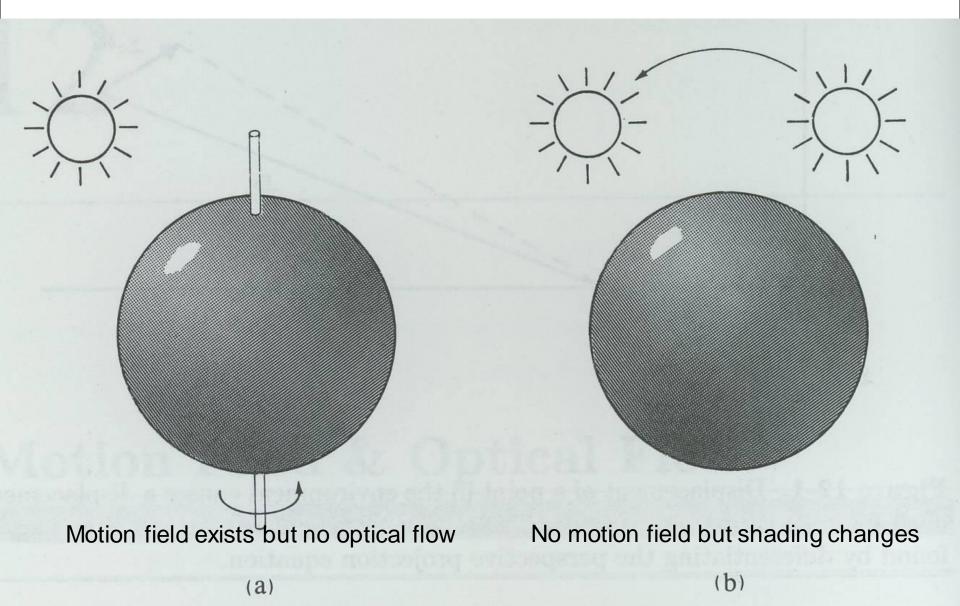
(David Nister, Kentucky)

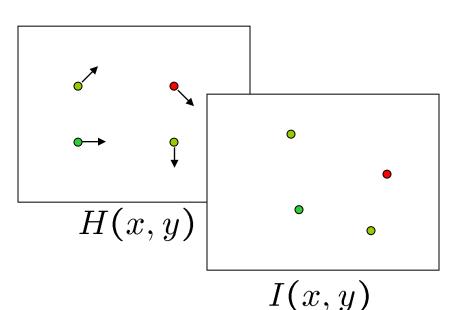

Motion Field


Image velocity of a point moving in the scene

Optical Flow

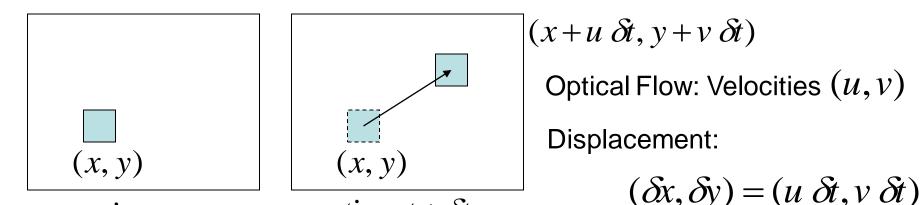
- Motion of brightness pattern in the image
- **Ideally** Optical flow = Motion field




VC 12/13 - T11 - Optical Flow

Optical Flow \neq Motion Field

Problem Definition: Optical Flow


- How to estimate pixel motion from image H to image I?
 - Find pixel correspondences
 - Given a pixel in H, look for nearby pixels of the same color in I

- Key assumptions
 - color constancy: a point in H looks "the same" in image I
 - For grayscale images, this is **brightness constancy**
 - small motion: points do not move very far

VC 12/13 - T11 - Optical Flow

Optical Flow Constraint Equation

time t

time $t + \delta t$

Assume brightness of patch remains same in both images:

$$E(x+u\,\,\delta t,\,y+v\,\,\delta t,t+\delta t) = E(x,\,y,t)$$

- Assume small motion: (Taylor expansion of LHS up to first order) $E(x, y, t) + \delta x \frac{\partial E}{\partial x} + \delta y \frac{\partial E}{\partial y} + \delta t \frac{\partial E}{\partial t} = E(x, y, t)$

VC 12/13 - T11 - Optical Flow

Optical Flow Constraint Equation

$$\delta x \frac{\partial E}{\partial x} + \delta y \frac{\partial E}{\partial y} + \delta t \frac{\partial E}{\partial t} = 0$$

Divide by δt and take the limit $\delta t \to 0$
$$\frac{dx}{dt} \frac{\partial E}{\partial x} + \frac{dy}{dt} \frac{\partial E}{\partial y} + \frac{\partial E}{\partial t} = 0$$

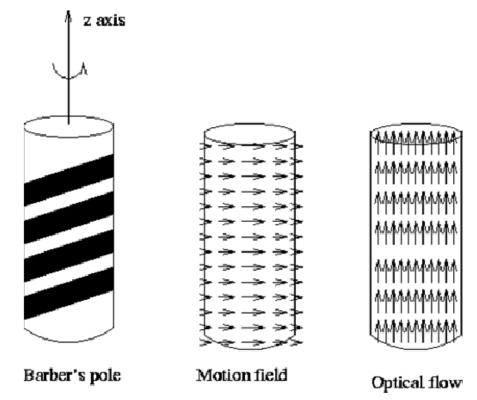
Constraint Equation
$$E_x u + E_y v + E_t = 0$$

NOTE: (u, v) must lie on a straight line

We can compute E_x , E_y , E_t using gradient operators! But, (u,v) cannot be found uniquely with this constraint!

Optical Flow Constraint

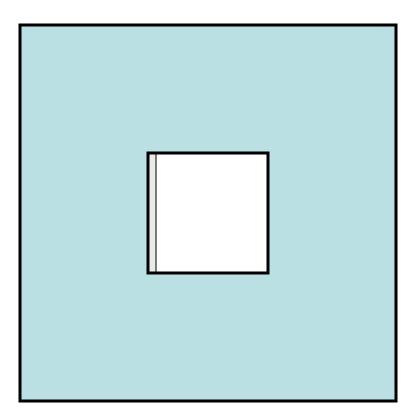
- Intuitively, what does this constraint mean?
 - The component of the flow in the gradient direction is determined.
 - The component of the flow parallel to an edge is unknown.


Topic: Aperture problem

- Optical Flow Constraint Equation
- Aperture problem.
- The Lucas & Kanade Algorithm

Optical Flow Constraint

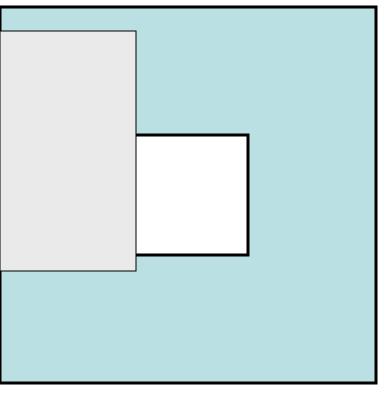
Barber pole illusion



VC 12/13 - T11 - Optical Flow

PORTO

How does this show up visually? Known as the "Aperture Problem"


[Gary Bradski, Intel Research and Stanford SAIL]

Aperture Problem Exposed

[Gary Bradski, Intel Research and Stanford SAIL]

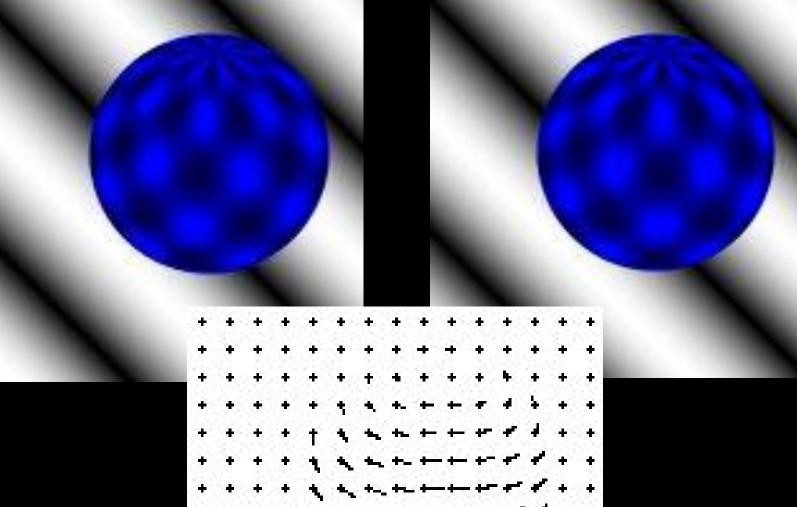
Motion along just an edge is ambiguous

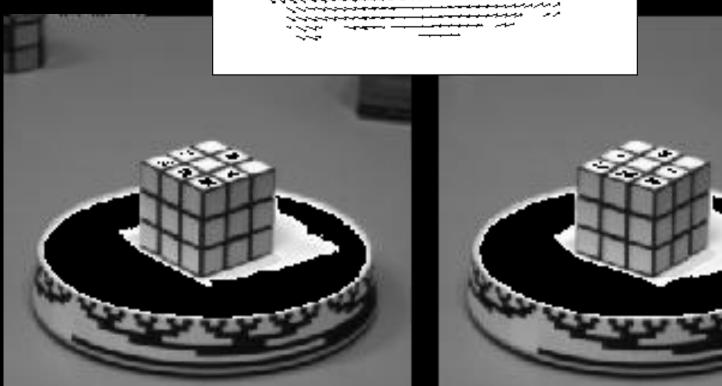
VC 12/13 - T11 - Optical Flow

Computing Optical Flow

• Formulate Error in Optical Flow Constraint:

$$e_c = \iint_{image} (E_x u + E_y v + E_t)^2 dx dy$$

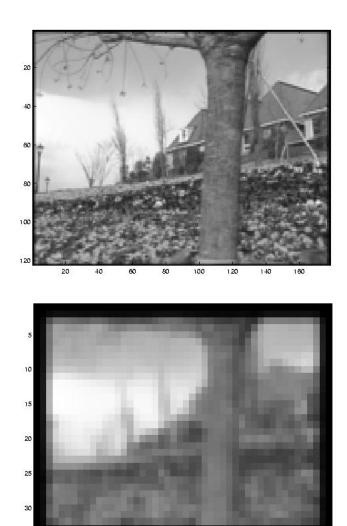

- We need additional constraints!
- Smoothness Constraint (as in shape from shading and stereo):

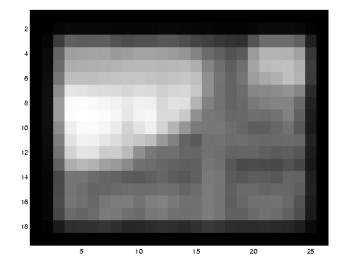

Usually motion field varies smoothly in the image. So, penalize departure from smoothness:

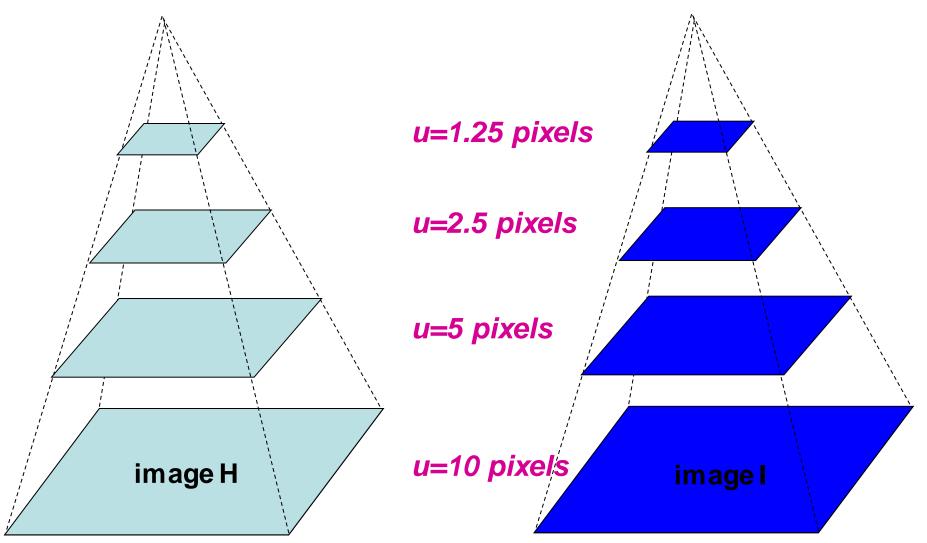
$$e_{s} = \iint_{image} (u_{x}^{2} + u_{y}^{2}) + (v_{x}^{2} + v_{y}^{2}) dx dy$$

• Find (u,v) at each image point that MINIMIZES:

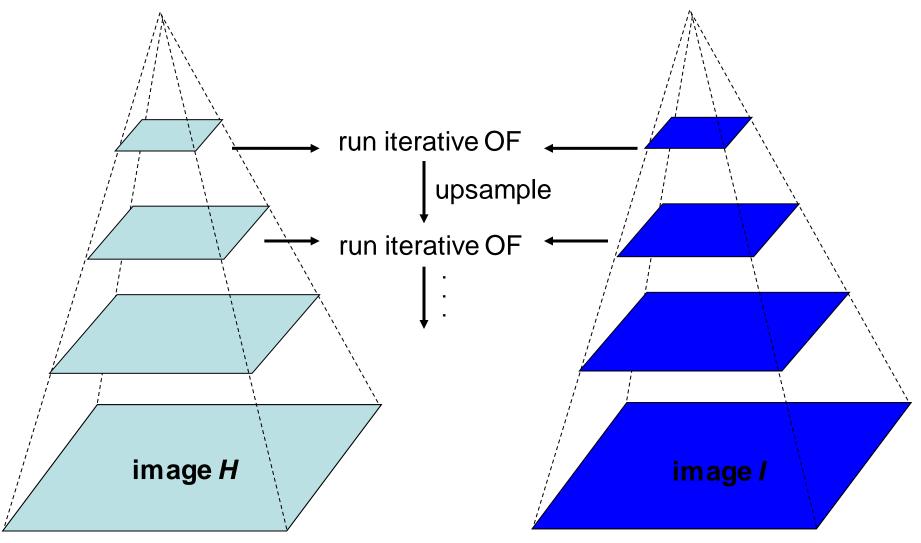
$$e = e_s + \lambda e_c$$
 weighting factor


+ \* \* \* \* \* \* • -------. . \* \* • . . • r -----2.3 ----\* N N . 1100 ---22000 ومجرم معصيت VVVVverence ----Concession


Revisiting the Small Motion Assumption


- Is this motion small enough?
 - Probably not—it's much larger than one pixel (2<sup>nd</sup> order terms dominate)
 - How might we solve this problem?

Reduce the Resolution!


Coarse-to-fine Optical Flow Estimation

Gaussian pyramid of image H

Gaussian pyramid of image I

Coarse-to-fine Optical Flow Estimation

Gaussian pyramid of image H

Gaussian pyramid of image I

Types of OF methods

- Differential
 - Horn and Schunck [HS80], Lucas Kanade [LK81], Nagel [83].
- Region-based matching
 - Anandan [Anan87], Singh [Singh90], Digital video encoding standards.
- Energy-based
 - Heeger [Heeg87]
- Phase-based
 - Fleet and Jepson [FJ90]

Open problem! Current solutions are not good enough!

Topic: The Lucas & Kanade Algorithm

- Optical Flow Constraint Equation
- Aperture problem.
- The Lucas & Kanade Algorithm

The Lucas & Kanade Method

- How to get more equations for a pixel?
 - Basic idea: impose additional constraints
 - · most common is to assume that the flow field is smooth locally
 - one method: pretend the pixel's neighbors have the same (u,v)
 - If we use a 5x5 window, that gives us 25 equations per pixel!

 $0 = I_t(\mathbf{p_i}) + \nabla I(\mathbf{p_i}) \cdot [u \ v]$

$$\begin{bmatrix} I_x(\mathbf{p}_1) & I_y(\mathbf{p}_1) \\ I_x(\mathbf{p}_2) & I_y(\mathbf{p}_2) \\ \vdots & \vdots \\ I_x(\mathbf{p}_{25}) & I_y(\mathbf{p}_{25}) \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} I_t(\mathbf{p}_1) \\ I_t(\mathbf{p}_2) \\ \vdots \\ I_t(\mathbf{p}_{25}) \end{bmatrix}$$
$$\begin{pmatrix} A & d & b \\ 25 \times 2 & 2 \times 1 & 25 \times 1 \end{bmatrix}$$

VC 12/13 - T11 - Optical Flow

Lukas-Kanade flow

• Prob: we have more equations than unknowns

 $\begin{array}{ccc} A & d = b \\ _{25 \times 2} & _{2 \times 1} & _{25 \times 1} \end{array} \longrightarrow \text{ minimize } \|Ad - b\|^2$

- Solution: solve least squares problem
 - minimum least squares solution given by solution (in d) of:

$$(A^T A)_{2\times 2} d = A^T b_{2\times 1} d = A^T b$$

$$\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$$
$$A^T A \qquad \qquad A^T b$$

- The summations are over all pixels in the K x K window
- This technique was first proposed by Lukas & Kanade (1981)
 - described in Trucco & Verri reading

\* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003

Conditions for solvability

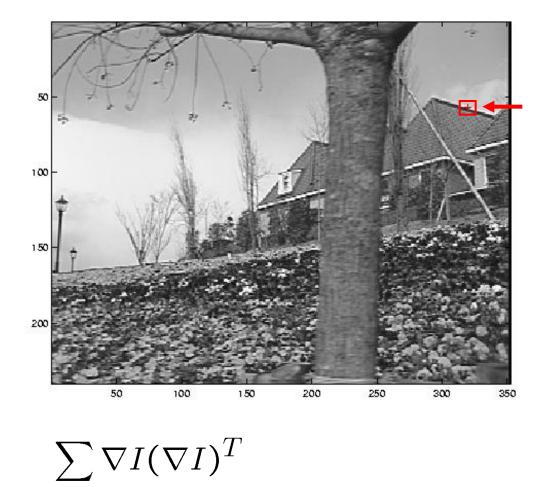
- Optimal (u, v) satisfies Lucas-Kanade equation $\begin{bmatrix} \sum I_x I_x & \sum I_x I_y \\ \sum I_x I_y & \sum I_y I_y \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = -\begin{bmatrix} \sum I_x I_t \\ \sum I_y I_t \end{bmatrix}$ $A^T A \qquad A^T b$

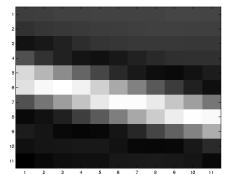
When is This Solvable?

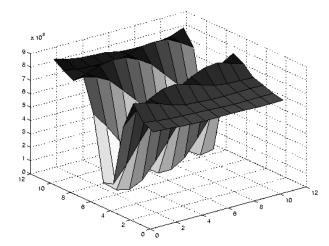
- A<sup>T</sup>A should be invertible
- **A<sup>T</sup>A** should not be too small due to noise
 - eigenvalues λ_1 and λ_2 of **A<sup>T</sup>A** should not be too small
- A<sup>T</sup>A should be well-conditioned
 - $-\lambda_1/\lambda_2$ should not be too large (λ_1 = larger eigenvalue)

Eigenvectors of A<sup>T</sup>A
$$A^{T}A = \begin{bmatrix} \sum I_{x}I_{x} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}I_{y} \end{bmatrix} = \sum \begin{bmatrix} I_{x} \\ I_{y} \end{bmatrix} [I_{x} I_{y}] = \sum \nabla I(\nabla I)^{T}$$

- Suppose (x,y) is on an edge. What is A^TA ?
 - gradients along edge all point the same direction
 - gradients away from edge have small magnitude

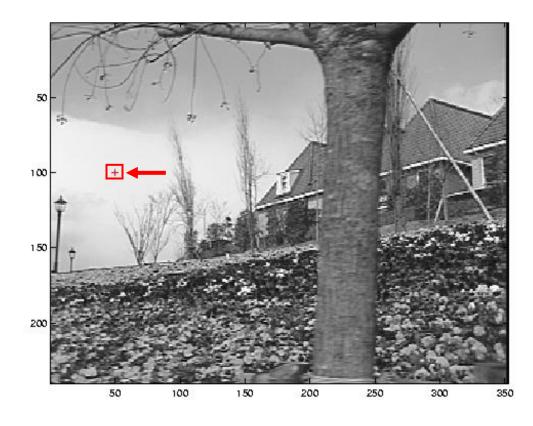

$$\left(\sum \nabla I (\nabla I)^T\right) \approx k \nabla I \nabla I^T$$
$$\left(\sum \nabla I (\nabla I)^T\right) \nabla I = k \|\nabla I\| \nabla I$$

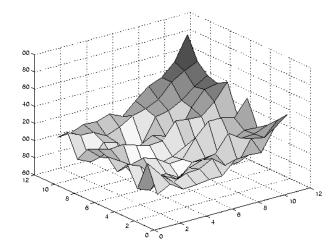

- $-\nabla I$ is an eigenvector with eigenvalue $\|k\|\nabla I\|$
- What's the other eigenvector of $A^T A$?
 - let N be perpendicular to ∇I


$$\left(\sum \nabla I (\nabla I)^T\right) N = 0$$

- N is the second eigenvector with eigenvalue 0
- The eigenvectors of A<sup>T</sup>A relate to edge direction and magnitude

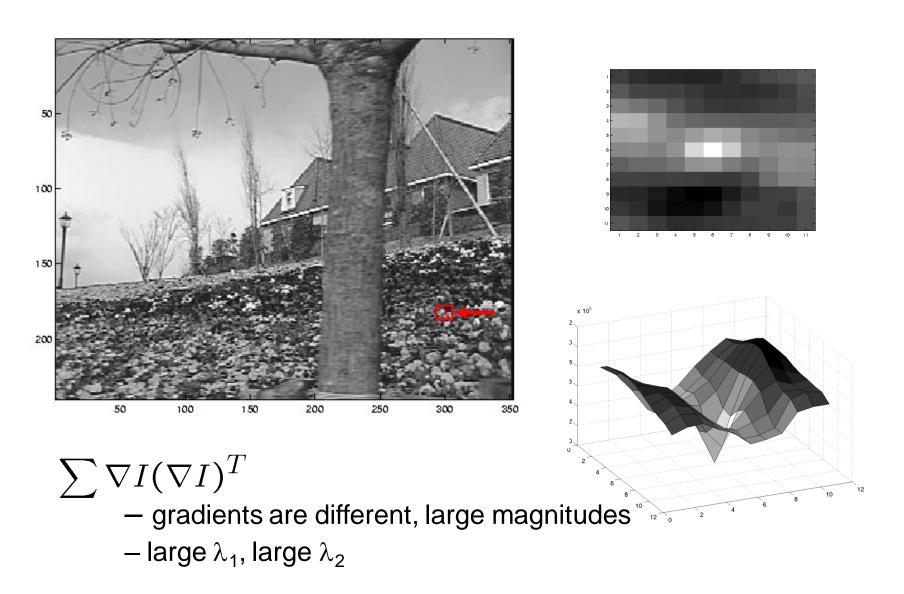
Edge





- large gradients, all the same - large λ_1 , small λ_2

Low texture region



 $\sum \nabla I (\nabla I)^T$

- gradients have small magnitude
- small λ_1 , small λ_2

High textured region

Sparse Motion Field

- We are only confident in motion vectors of areas with two strong eigenvectors.
 - Optical flow.
- Not so confident when we have one or zero strong eigenvectors.
 - Normal flow (apperture problem).
 - Unknown flow (blank-wall problem).

Summing all up

- Optical flow:
 - Algorithms try to approximate the true motion field of the image plane.
 - The Optical Flow Constraint Equation needs an additional constraint (e.g. smoothness, constant local flow).
 - The Lucas Kanade method is the most popular Optical Flow Algorithm.
- What applications is this useful for?
- What about block matching?

Resources

- Barron, "Tutorial: Computing 2D and 3D Optical Flow.", <u>http://www.tina-</u> vision.net/docs/memos/2004-012.pdf
- CVonline: Optical Flow http://homepages.inf.ed.ac.uk/cgi/rbf/CVONLINE/entries.pl?TAG518
- Fast Image Motion Estimation Demo

http://extra.cmis.csiro.au/IA/changs/motion/

