# VC 12/13-T5 Single Pixel Manipulation 

Mestrado em Ciência de Computadores
Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos

## Miguel Tavares Coimbra

## Outline

- Dynamic Range Manipulation
- Neighborhoods and Connectivity
- Image Arithmetic
- Example: Background Subtraction


## Topic: Dynamic Range Manipulation

- Dynamic Range Manipulation
- Neighborhoods and Connectivity
- Image Arithmetic
- Example: Background Subtraction


## Manipulation



What I see


What I want to see

## Digital Images



What we see
What a computer sees

## Pixel Manipulation

- Let's start simple
- I want to change a single Pixel.

$$
f(X, Y)=\text { MyNewValue }
$$

- Or, I can apply a transformation T to all pixels individually.

$$
g(x, y)=T[f(x, y)]
$$



## Image Domain

- I am directly changing values of the image matrix.

$$
g=T(f)
$$

- Image Domain
- So, what is the other possible 'domain'?


## Image Negative



What I see
What I want to see

## Image Negative

- Consider the maximum value allowed by quantization (max).
- For 8 bits: 255
- Then:

$$
\begin{aligned}
& g(x, y)=\max -f(x, y) \\
& g(x, y)=255-f(x, y)
\end{aligned}
$$



What I want to see

## Dynamic Range Manipulation

- What am I really doing?
- Changing the response of my image to the received brightness.
- Dynamic Range Manipulation

- Represented by a 2D Plot.

- Normal
—— Inverted


## Why DRM?



## Why DRM?


U.PORTO FC Vc 12/13-T5-Single Pixel Manipulation

## Other DRM functions

- By manipulating our function we can:
- Enhance generic image visibility.
- Enhance specific visual features.
- Use quantization space a lot better.



## Contrast Stretching

- 'Stretches’ the dynamic range of an image.
- Corrects some image capture problems:
- Poor illumination, aperture, poor sensor performance, etc.

$$
g=\max \frac{f-\min }{\max -\min }
$$



## Histogram Processing

- Histograms give us an idea of how we are using our dynamic range



## Types of Image Histograms

- Images can be classified into types according to their
histogram
- Dark
- Bright
- Low-contrast
- High-contrast



## Types of Image Histograms



## Histogram Equalization

$s_{k}=T\left(r_{k}\right)=\sum_{j=0}^{k} \frac{n_{j}}{n}=\sum_{j=0}^{k} p_{r}\left(r_{j}\right)$

- Objective:
- Obtain a 'flat' histogram.
- Enhance visual contrast.
- Digital histogram
- Result is a 'flat-ish' histogram.
- Why?

$\square$


## Histogram Equalization



## Topic: Neighborhoods and Connectivity

- Dynamic Range Manipulation
- Neighborhoods and Connectivity
- Image Arithmetic
- Example: Background Subtraction


## Neighbors



## Digital Images



What a computer sees

## 4-Neighbors

- A pixel $p$ at $(x, y)$ has

2 horizontal and 2 vertical neighbors:

- ( $\mathrm{x}+1, \mathrm{y}$ ), ( $\mathrm{x}-1, \mathrm{y}$ ), $(x, y+1),(x, y-1)$
$-N_{4}(p)$ : Set of the 4neighbors of $p$.
- Limitations?



## 8-Neighbors

- A pixel has 4 diagonal neighbors
$-(x+1, y+1),(x+1, y-1)$, $(x-1, y+1),(x-1, y-1)$
$-N_{D}(p)$ : Diagonal set of neighbors
- $N_{8}(p)=N_{4}(p)+N_{D}(p)$
- Limitations?

| $(x-1$, <br> $y-1)$ | $(x, y-1)$ | $(x+1$, <br> $y-1)$ |
| :---: | :---: | :---: |
| $(x-1, y)$ | $i$ | $(x+1, y)$ |
| $(x-1$, <br> $y+1)$ | $(x, y+1)$ | $(x+1$, <br> $y+1)$ |

## Connectivity

- Two pixels are connected if:
- They are neighbors (i.e. adjacent in some sense -- e.g. $\mathrm{N}_{4}(\mathrm{p})$, $\mathrm{N}_{8}(\mathrm{p}), \ldots$ )
- Their gray levels satisfy a specified criterion of similarity (e.g. equality, ...)

| $\left(\begin{array}{c}(x-1, \\ y-1)\end{array}\right.$ | $(x, y-1)$ | $(x+1$, <br> $y-1)$ |
| :---: | :---: | :---: |
| $(x-1, y)$ | $(x, y-1)$ | $(x+1, y)$ |
| $(x-1$, <br> $y+1)$ | $(x, y+1)$ | $(x+1$, <br> $y+1)$ |

## 4 and 8-Connectivity

| $(x-1$, <br> $y-1)$ | $(x, y-1)$ | $(x+1$, <br> $y-1)$ |  |
| :--- | :--- | :--- | :---: |
| $(x-1, y)$ | $(x, y-1)$ | $(x+1, y)$ |  |
| $\left(\begin{array}{l}(x-1, \\ y+1)\end{array}\right.$ | $(x, y+1)$ | $(x+1$, <br> $y+1)$ |  |
| 4 4-Connectivity |  |  |  |



## Distances



## D4 Distance

- $\mathrm{D}_{4}$ distance (city-block distance):
$-D_{4}(p, q)=|x-s|+|y-t|$
- forms a diamond centered at ( $\mathrm{x}, \mathrm{y}$ )
- e.g. pixels with $\mathrm{D}_{4} \leq 2$ from p

|  | 2 |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| 2 | 1 | 2 |  |  |
| 2 | 1 | 0 | 1 | 2 |
| 2 | 1 | 2 |  |  |$\quad \quad \mathrm{D}_{4}=1$ are the 4-neighbors of p

## D8 Distance

- $\mathrm{D}_{8}$ distance (chessboard distance):
$-D_{8}(p, q)=\max (|x-s|,|y-t|)$
- Forms a square centered at $p$
- e.g. pixels with $D_{8} \leq 2$ from $p$

| 2 | 2 | 2 | 2 | 2 |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 1 | 1 | 2 |
| 2 | 1 | 0 | 1 | 2 |
| 2 | 1 | 1 | 1 | 2 |
| 2 | 2 | 2 | 2 | 2 |$\quad \mathrm{D}_{8}=1$ are the 8 -neighbors of p

## Euclidean Distance

- Euclidean distance:
$-D_{e}(p, q)=\left[(x-s)^{2}+(y-\right.$ t) $)^{1 / 2}$
- Points (pixels) having a distance less than or equal to $r$ from ( $x, y$ ) are contained in a disk of radius $r$ centered at ( $\mathrm{x}, \mathrm{y}$ ).


## Topic: Image Arithmetic

- Dynamic Range Manipulation
- Neighborhoods and Connectivity
- Image Arithmetic
- Example: Background Subtraction


## Arithmetic operations between images



## Arithmetic operations between images



Why do I want to add these images?

## Arithmetic operations between images


U.PORTO VC VC 12/13-T5 - Single Pixel Manipulation

## Image Arithmetic

- Image 1: a(x,y)
- Image 2: b(x,y)
- Result: $c(x, y)=a(x, y)$ OPERATION $b(x, y)$
- Possibilities:
- Addition
- Subtraction
- Multiplication
- Division
- Etc..


## Example



FIGURE 3.30 (a) Image of Galaxy Pair NGC3314. (b) Image corrupted by additive Gaussian noise with zero mean and a standard deviation of 64 gray levels. (c)-(f) Results of averaging $K=8,16,64$, and 128 noisy images. (Original image courtesy of NASA.)

## Logic Operations

- Binary Images
- We can use Boolean Logic
- Operations:
- AND
- OR
- NOT


## More on this when

 we study mathematical morphology.
## Topic: Example: Background Subtraction

- Dynamic Range Manipulation
- Neighborhoods and Connectivity
- Image Arithmetic
- Example: Background Subtraction


## Example: Background Subtraction

- Image arithmetic is simple and powerful.



## Background Subtraction

- Remember: We can only see numbers!



## Background Subtraction

- What if I know this?


## Background Subtraction

- Subtract!
- Limitations?



## Background Subtraction

- Objective:
- Separate the foreground objects from a static background.
- Large variety of methods:
- Mean \& Threshold [CD04]
- Normalized Block Correlation [Mats00]
- Temporal Derivative [Hari98]
- Single Gaussian [Wren97]
- Mixture of Gaussians [Grim98]

Segmentation!! More on this later.

## Resources

- R. Gonzalez, and R. Woods - Chapter 2
- R. Gonzalez, and R. Woods - Chapter 4
- K. Toyama, J. Krumm, B. Brumitt, and B. Meyers, "Wallflower: Principles and practice of background maintenance", in Proc. of IEEE ICCV, Corfu, Greece, 1999.

