VC 12/13-T7 Spatial Filters

Mestrado em Ciência de Computadores
Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos

Miguel Tavares Coimbra

Outline

- Spatial filters

- Frequency domain filtering
- Edge detection

Acknowledgements: Most of this course is based on the excellent courses offered by Prof. Shree Nayar at Columbia University, USA and by Prof. Srinivasa Narasimhan at CMU, USA. Please acknowledge the original source when reusing these slides for academic purposes.

Topic: Spatial filters

- Spatial filters
- Frequency domain filtering
- Edge detection

Images are Discrete and Finite

$f(x, y) \longrightarrow h(x, y) \longrightarrow g(x, y)$

Convolution

$$
g(i, j)=\sum_{m=1}^{M} \sum_{n=1}^{N} f(m, n) h(i-m, j-n)
$$

Fourier Transform

$$
F(u, v)=\sum_{m=1}^{M} \sum_{n=1}^{N} f(m, n) e^{-i 2 \pi\left(\frac{m u}{M}+\frac{n v}{N}\right)}
$$

Inverse Fourier Transform

$$
f(k, l)=\frac{1}{M N} \sum_{u=1}^{M} \sum_{v=1}^{N} F(u, v) e^{i 2 \pi\left(\frac{k u}{M}+\frac{l v}{N}\right)}
$$

Spatial Mask

- Simple way to process an image.
- Mask defines the processing function.
- Corresponds to a multiplication in frequency domain.

Example

- Each mask position has weight w.
- The result of the operation for each pixel is given by:

$g(x, y)=\sum_{s=-a t=-b}^{a} \sum^{b} w(s, t) f(x+s, y+t)$

$$
\begin{aligned}
& =1 * 2+2 * 2+1 * 2+\ldots \\
& =8+0-20 \\
& =-12
\end{aligned}
$$

Definitions

- Spatial filters
- Use a mask (kernel) over an image region.
- Work directly with pixels.
- As opposed to: Frequency filters.
- Advantages
- Simple implementation: convolution with the kernel function.
- Different masks offer a large variety of functionalities.

Averaging

Let's think about averaging pixel values

For $n=2$, convolve pixel values with | 1 | 2 | 1 |
| :--- | :--- | :--- |

Which is faster?

$$
\text { (a) } O(2(n+1)) \quad(b) O\left((n+1)^{2}\right)
$$

2D images:

(a) use | 1 | 2 | 1 |
| :--- | :--- | :--- |

then \begin{tabular}{|l|l|l|}
\hline 1

\hline 2

\hline 1

\hline 1 \& or (b) use | 1 | 2 | 1 |
| :--- | :--- | :--- |$*$| 1 | 2 | 1 |
| :--- | :--- | :--- |
| 2 | | |
| 2 | 4 | 2 |
| 1 | 2 | 1 |

\hline
\end{tabular}

Averaging

The convolution kernel

Repeated averaging \approx Gaussian smoothing

Gaussian Smoothing

Gaussian kernel

$$
h(i, j)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{1}{2}\left(\frac{i^{2}+j^{2}}{\sigma^{2}}\right)}
$$

Filter size $N \propto \sigma \quad$...can be very large (truncate, if necessary)

$$
g(i, j)=\frac{1}{2 \pi \sigma^{2}} \sum_{m=1} \sum_{n=1} e^{-\frac{1}{2}\left(\frac{m^{2}+n^{2}}{\sigma^{2}}\right)} f(i-m, j-n)
$$

2D Gaussian is separable!

$$
g(i, j)=\frac{1}{2 \pi \sigma^{2}} \sum_{m=1}^{-\frac{1 m^{2}}{2 \sigma^{2}}} \sum_{n=1} e^{-\frac{1 n^{2}}{2 \sigma^{2}}} f(i-m, j-n)
$$

Use two 1D
Gaussian Filters!

Gaussian Smoothing

- A Gaussian kernel gives less weight to pixels further from the center of the window

$$
H[u, v] \quad \frac{\mathbf{1}}{\mathbf{1 6}} \begin{array}{|c|c|c|}
\hline 1 & 2 & 1 \\
\hline 2 & 4 & 2 \\
\hline 1 & 2 & 1 \\
\hline \hline
\end{array}
$$

- This kernel is an approximation of a Gaussian function:

$$
\begin{aligned}
& F[x, y] \\
& h(u, v)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{u^{2}+v^{2}}{\sigma^{2}}}
\end{aligned}
$$

Mean Filtering

- We are degrading the energy of the high spatial frequencies of an image (low-pass filtering).
- Makes the image 'smoother'.
- Used in noise reduction.
- Can be implemented with spatial masks or in the frequency domain.

1	1	1
1	1	1
1	1	1

$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$
$1 / 9$	$1 / 9$	$1 / 9$

http://www.michaelbach.de/ot/cog blureffects/index.html

Median Filter

- Smoothing is averaging
(a)
(a) Blurs edges
(b) Sensitive to outliers
- Median filtering
- Sort $N^{2}-1$ values around the pixel
- Select middle value (median)

- Non-linear (Cannot be implemented with convolution)

Salt and pepper noise

Gaussian noise

Border Problem

Border Problem

- Ignore
- Output image will be smaller than original
- Pad with constant values
- Can introduce substantial $1^{\text {st }}$ order derivative values
- Pad with reflection
- Can introduce substantial $2^{\text {nd }}$ order derivative values

Topic: Frequency domain filtering

- Spatial filters
- Frequency domain filtering
- Edge detection

Image Processing in the Fourier Domain

Magnitude of the FT

Does not look anything like what we have seen

Convolution in the Frequency Domain

Low-pass Filtering

Low-pass filter

Lets the low frequencies pass and eliminates the high frequencies.

Generates image with overall shading, but not much detail

High-pass Filtering

Original image

High-pass image

FFT of original image

FFT of high-pass image

High-pass filter

Lets through the high frequencies (the detail), but eliminates the low frequencies (the overall shape). It acts like an edge enhancer.

Boosting High Frequencies

Original image

High boosted image

FFT of original image

FFT of high boosted image

: FFT of ARCOSL.TGA	- - - ${ }^{\text {a }}$
3)	
-4-20 5	

The Ringing Effect

http://homepages.inf.ed.ac.uk/rbf/HIPR2/freqfilt.htm

VC 12/13-T7 - Spatial Filters

Topic: Edge detection

- Spatial filters
- Frequency domain filtering
- Edge detection

Edge Detection

- Convert a 2D image into a set of curves
- Extracts salient features of the scene
- More compact than pixels

Origin of Edges

- Edges are caused by a variety of factors

How can you tell that a pixel is on an edge?

Edge Types

Real Edges

We want an Edge Operator that produces:

- Edge Magnitude
- Edge Orientation
- High Detection Rate and Good Localization

Gradient

- Gradient equation: $\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$
- Represents direction of most rapid change in intensity

$$
\xrightarrow{\nabla f}=\left[\frac{\partial f}{\partial x}, 0\right]
$$

- Gradient direction: $\quad \theta=\tan ^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$
- The edge strength is given by the gradient magnitude

$$
\|\nabla f\|=\sqrt{\left(\frac{\partial f}{\partial x}\right)^{2}+\left(\frac{\partial f}{\partial y}\right)^{2}}
$$

Theory of Edge Detection

$$
u(t)=\left\{\begin{array}{cc}
1 & \text { for } t>0 \\
1 / 2 & \text { for } t=0 \\
0 & \text { for } t<0
\end{array} \quad u(t)=\int_{-\infty}^{t} \delta(s) d s\right.
$$

Image intensity (brightness):

$$
I(x, y)=B_{1}+\left(B_{2}-B_{1}\right) u(x \sin \theta-y \cos \theta+\rho)
$$

Theory of Edge Detection

- Partial derivatives (gradients):

$$
\begin{aligned}
& \frac{\partial I}{\partial x}=+\sin \theta\left(B_{2}-B_{1}\right) \delta(x \sin \theta-y \cos \theta+\rho) \\
& \frac{\partial I}{\partial y}=-\cos \theta\left(B_{2}-B_{1}\right) \delta(x \sin \theta-y \cos \theta+\rho)
\end{aligned}
$$

- Squared gradient:

$$
s(x, y)=\left(\frac{\partial I}{\partial x}\right)^{2}+\left(\frac{\partial I}{\partial y}\right)^{2}=\left[\left(B_{2}-B_{1}\right) \delta(x \sin \theta-y \cos \theta+\rho)\right]^{2}
$$

Edge Magnitude: $\sqrt{s(x, y)}$
Edge Orientation: $\arctan \left(\frac{\partial I}{\partial y} / \frac{\partial I}{\partial x}\right)$ (normal of the edge)
Rotationally symmetric, non-linear operator

Theory of Edge Detection

- Laplacian:

$$
\nabla^{2} I=\frac{\partial^{2} I}{\partial x^{2}}+\frac{\partial^{2} I}{\partial y^{2}}=\left(B_{2}-B_{1}\right) \delta^{\prime}(x \sin \theta-y \cos \theta+\rho)
$$

Rotationally symmetric, linear operator

Discrete Edge Operators

- How can we differentiate a discrete image?

Finite difference approximations:

$$
\begin{aligned}
& \frac{\partial I}{\partial x} \approx \frac{1}{2 \varepsilon}\left(\left(I_{i+1, j+1}-I_{i, j+1}\right)+\left(I_{i+1, j}-I_{i, j}\right)\right) \\
& \frac{\partial I}{\partial y} \approx \frac{1}{2 \varepsilon}\left(\left(I_{i+1, j+1}-I_{i+1, j}\right)+\left(I_{i, j+1}-I_{i, j}\right)\right)
\end{aligned}
$$

$$
\begin{array}{|c|c|}
\hline I_{i, j+1} & I_{i+1, j+1} \\
\hline I_{i, j} & I_{i+1, j} \\
\hline
\end{array} \mathbb{\unrhd}
$$

Convolution masks :

$$
\frac{\partial I}{\partial x} \approx \frac{1}{2 \varepsilon} \begin{array}{|c|c|}
\hline-1 & 1 \\
\hline-1 & 1 \\
\hline
\end{array} \quad \frac{\partial I}{\partial y} \approx \frac{1}{2 \varepsilon} \begin{array}{|c|c|}
\hline 1 & 1 \\
\hline-1 & -1 \\
\hline
\end{array}
$$

Discrete Edge Operators

- Second order partial derivatives:
- Laplacian :

$$
\begin{aligned}
& \frac{\partial^{2} I}{\partial x^{2}} \approx \frac{1}{\varepsilon^{2}}\left(I_{i-1, j}-2 I_{i, j}+I_{i+1, j}\right) \\
& \frac{\partial^{2} I}{\partial y^{2}} \approx \frac{1}{\varepsilon^{2}}\left(I_{i, j-1}-2 I_{i, j}+I_{i, j+1}\right)
\end{aligned}
$$

$I_{i-1, j+1}$	$I_{i, j+1}$	$I_{i+1, j+1}$
$I_{i-1, j}$	$I_{i, j}$	$I_{i+1, j}$
$I_{i-1, j-1}$	$I_{i, j-1}$	$I_{i+1, j-1}$

$$
\nabla^{2} I=\frac{\partial^{2} I}{\partial x^{2}}+\frac{\partial^{2} I}{\partial y^{2}}
$$

Convolution masks :

$\nabla^{2} I \approx \frac{1}{\varepsilon^{2}}$| 0 | 1 | 0 |
| :---: | :---: | :---: |
| 1 | -4 | 1 |
| 0 | 1 | 0 |\quad or $\frac{1}{6 \varepsilon^{2}}$| 1 | 4 | 1 |
| :---: | :---: | :---: | :---: |
| 4 | -20 | 4 |
| 1 | 4 | 1 |

(more accurate)

The Sobel Operators

- Better approximations of the gradients exist
- The Sobel operators below are commonly used

$\frac{1}{8}$| -1 | 0 | 1 |
| :--- | :--- | :--- |
| -2 | 0 | 2 |
| -1 | 0 | 1 |
| s_{x} | | |

$\frac{1}{8}$| 1 | 2 | 1 |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| -1 | -2 | -1 |
| s_{y} | | |

Comparing Edge Operators

Gradient:

$$
\nabla f=\left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]
$$

Roberts (2 x 2):

0	1
-1	0

1	0
0	-1

Sobel (3 x 3):

-1	0	1
-1	0	1
-1	0	1

1	1	1
0	0	0
-1	-1	1

Sobel (5 x 5):

-1	-2	0	2	1
-2	-3	0	3	2
-3	-5	0	5	3
-2	-3	0	3	2
-1	-2	0	2	1

1	2	3	2	1
2	3	5	3	2
0	0	0	0	0
-2	-3	-5	-3	-2
-1	-2	-3	-2	-1

Poor Localization Less Noise Sensitive Good Detection

Effects of Noise

- Consider a single row or column of the image
- Plotting intensity as a function of position gives a signal

\square

Solution: Smooth First

Where is the edge?
Look for peaks in $\frac{\partial}{\partial x}(h \star f)$

Derivative Theorem of Convolution

$$
\frac{\partial}{\partial x}(h \star f)=\left(\frac{\partial}{\partial x} h\right) \star f
$$

...saves us one operation.

Sigma $=50$

$\left(\frac{\partial}{\partial x} h\right) \star f$

Laplacian of Gaussian (LoG)

$\left(\frac{\partial^{2}}{\partial x^{2}} h\right) \star f$

Where is the edge?

2D Gaussian Edge Operators

$$
\begin{gathered}
h_{\sigma}(u, v)=\frac{1}{2 \pi \sigma^{2}} e^{-\frac{u^{2}+v^{2}}{2 \sigma^{2}}} \text { Derivative of Gaussian (DoG) } \\
\text { Gaussian }
\end{gathered}
$$

- ∇^{2} is the Laplacian operator: $\nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}$

Canny Edge Operator

- Smooth image / with 2D Gaussian: $G * I$
- Find local edge normal directions for each pixel

$$
\overline{\mathbf{n}}=\frac{\nabla(G * I)}{|\nabla(G * I)|}
$$

- Compute edge magnitudes

$$
|\nabla(G * I)|
$$

- Locate edges by finding zero-crossings along the edge normal directions (non-maximum suppression)

$$
\frac{\partial^{2}(G * I)}{\partial \overline{\mathbf{n}}^{2}}=0
$$

Non-maximum Suppression

- Check if pixel is local maximum along gradient direction
- requires checking interpolated pixels p and r

original image

Canny Edge Operator

- The choice of σ depends on desired behavior
- large σ detects large scale edges
- small σ detects fine features

Difference of Gaussians (DoG)

- Laplacian of Gaussian can be approximated by the difference between two different Gaussians

DoG Edge Detection

Unsharp Masking

$\square ?$

Resources

- Gonzalez \& Woods - Chapter 4

